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Project Abstract 

Current methods to evaluate Li-ion batteries safety, performance, reliability and 

lifetime represent a remarkable resource consumption for the overall battery R&D 

process. The time or number of tests required, the expensive equipment and a 

generalised trial-error approach are determining factors, together with a lack of 

understanding of the complex multiscale and multi-physics phenomena in the 

battery system. Besides, testing facilities are operated locally, meaning that data 

management is handled directly in the facility, and that experimentation is done 

on one test bench. 

The FASTEST project aims to develop and validate a fast-track testing platform 

able to deliver a strategy based on Design of Experiments (DoE) and robust testing 

results, combining multi-scale and multi-physics virtual and physical testing. This 

will enable an accelerated battery system R&D and more reliable, safer, and long-

lasting battery system designs. The project’s prototype of a fast-track hybrid 

testing platform aims for a new holistic and interconnected approach. From a 

global test facility perspective, additional services like smart DoE algorithms, 

virtualised benches, and DT data are incorporated into the daily facility operation 

to reach a new level of efficiency. 

During the project, FASTEST consortium aims to develop up to TRL 6 the platform 

and its components: the optimal DoE strategies according to three different use 

cases (automotive, stationary, and off-road); two different cell chemistries, 3b and 

4 solid-state (oxide polymer electrolyte); the development of a complete set of 

physic-based and data-driven models able to substitute physical characterisation 

experiments; and the overarching Digital Twin architecture managing the 

information flows, and the TRL6 proven and integrated prototype of the hybrid 

testing platform. 

 

 

 

 

 

 

 

 



 D3.1: Multiscale high-fidelity modelling paradigm

  for physical testing virtualization  

Page 5 of 47 

  

Date: 24/11/2023 

 

LIST OF ABBREVIATIONS, ACRONYMS AND DEFINITIONS 

Acronym Name 

ASD Acceleration spectral density 

BMS Battery Management System 

BTMS Battery Thermal Management System 

BOL Beginning of Life  

CFD Computational Fluid Dynamics 

DoD Depth of Discharge 

EC Ethylene Carbonate 

EIS Electrochemical Impedance Spectroscopy 

EOL End of Life 

FEA Finite Element Analysis 

FIB Focused Ion Beam 

FRF Frequency response 

HPPC Hybrid Pulse Power Characterisation 

LFP Lithium iron phosphate LiFePO4 

MOR Model Order Reduction 

MSMD Multi-Scale, Multi-Domain 

P2D Pseudo-two Dimensional model 

PBM Physics-Based Models 

PSD Power Spectral Density 

SEI Solid Electrolyte Interphase 



 D3.1: Multiscale high-fidelity modelling paradigm

  for physical testing virtualization  

Page 6 of 47 

  

Date: 24/11/2023 

SEM Scanning Electron Microscope 

SOC State of Charge 

SOH State of Health 

SPM Single Particle Model 

SPMe Extended Single Particle Model 

TEM Transmission Electron Microscope 

 

LIST OF TABLES 

Table 1. Model comparison ...................................................................... 14 

Table 2. P2D model non-invasive validation methods. .................................. 31 

 

LIST OF FIGURES 

Figure 1. Schematic representation of the electrochemical model on a full-cell 

configuration ........................................................................................ 15 

Figure 2. Schematic representation of the main degradation phenomena in Li-ion 

batteries. Source: [35]. .......................................................................... 18 

Figure 3. Schematic representation of the Li-plating and Li-stripping. Source 

[46]. ................................................................................................... 20 

Figure 4. The main degradation processes of Silicon due to its high volume 

expansion. Source [52]. ......................................................................... 21 

Figure 5. Open circuit potential of (a) graphite and (b) silicon. Source [55]. .... 22 

Figure 6. Proposed method for vibrational fatigue analysis. .......................... 27 

Figure 7. FRF response in a specific node of the structure. ............................ 28 

Figure 8. Damage histogram ................................................................... 29 

Figure 9. Welded joint modelling .............................................................. 29 

Figure 10. Proposed method for shock analysis ........................................... 29 

Figure 11. Example of capacity retention measurement on LFP/Graphite cells. 

Source [39]. ......................................................................................... 32 

Figure 12. Example of the evolution of the impedance spectra of a Li-ion battery 

during the electrochemical cycling. Source [94]. ......................................... 33 

 



 D3.1: Multiscale high-fidelity modelling paradigm

  for physical testing virtualization  

Page 7 of 47 

  

Date: 24/11/2023 

Table of Contents 

1. EXECUTIVE SUMMARY ............................................................................... 8 

2. OBJECTIVES ............................................................................................ 9 

3. INTRODUCTION ......................................................................................10 

4. CELL LEVEL MODELLING ...........................................................................11 

4.1 Types of modeling ............................................................................. 11 

4.1.1 Empirical Models ......................................................................... 12 

4.1.2 Physics-Based Models .................................................................. 12 

4.1.3 Data-Driven Models ..................................................................... 13 

4.2 Physics-based modeling ..................................................................... 14 

4.3 Extension to account for thermal aspects ............................................. 17 

4.4 Degradation phenomena and modelling approaches ............................... 18 

4.4.1 Introduction ............................................................................... 18 

4.4.2 LFP transport properties and aging ................................................ 18 

4.4.3 Growth of the SEI layer ............................................................... 19 

4.4.4 Plating of the metallic Li ............................................................... 20 

4.4.5 Mechanical stresses ..................................................................... 21 

4.4.6 Gas evolution ............................................................................. 23 

5. MODULE LEVEL MODELLING ......................................................................24 

5.1 Types of modeling ............................................................................. 24 

5.1.1 Thermal analysis ......................................................................... 24 

5.1.2 Mechanical structural analysis ....................................................... 25 

5.2 Description of electro-thermal model ................................................... 25 

5.3 Description of the mechanical model ................................................... 26 

5.3.1 Swelling .................................................................................... 27 

5.3.2 Vibrational fatigue analysis ........................................................... 27 

5.3.3 Shock analysis ............................................................................ 29 

6. FASTEST cell and module level description and models validation ...................30 

6.1 Model Validation at cell level ............................................................... 31 

6.1.1 Capacity retention ....................................................................... 32 

6.1.2 EIS measurements ...................................................................... 33 

6.1.3 Advanced post-mortem microscopy ............................................... 34 

6.2 Model validation at module level ......................................................... 34 

7. CONCLUSION ..........................................................................................36 

8. Bibliography ...........................................................................................37 



 D3.1: Multiscale high-fidelity modelling paradigm

  for physical testing virtualization  

Page 8 of 47 

  

Date: 24/11/2023 

 

1. EXECUTIVE SUMMARY 

Deliverable D3.1 is an essential document within the FASTEST project, 

meticulously investigating diverse modeling approaches to ascertain the most 

effective methods for the project's goals in battery system development. The 

deliverable rigorously assesses various modeling techniques, scrutinizing their 

capabilities to accurately predict and enhance battery performance at multiple 

scales. 

The document serves as a cornerstone for the project, judiciously determining 

which modeling techniques are most conducive to advancing the FASTEST project's 

objectives. By systematically comparing different methodologies, the deliverable 

identifies a curated set of models that promise to bring precision and efficiency to 

the project's research endeavors. 

In shaping Deliverable D3.1, the FASTEST team has been deliberate in selecting 

models based on their practicality, relevance, and potential impact. This 

foundational work is expected to guide the project's path forward, influencing the 

design and execution of subsequent experiments and simulations. The deliverable 

is thus not only a reflection of comprehensive analytical work but also a strategic 

guide for the project's future modeling and testing efforts. 

In conclusion, Deliverable D3.1 encapsulates a thorough selection process, 

highlighting the deliverable's pivotal role in steering the FASTEST project toward 

the adoption of robust and effective modeling techniques. These methodologies 

are set to underpin the project's innovative approach to battery technology, 

enhancing the project's contribution to the advancement of energy storage 

solutions. 
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2. OBJECTIVES 

Within the FASTEST project, Deliverable 3.1 focuses on establishing advanced 

modeling paradigms for the virtualization of physical testing in lithium-ion 

batteries. The primary aim is to define and develop cell-level modeling 

methodologies, encompassing empirical, physics-based, and data-driven models. 

Emphasis is placed on comparing and analyzing these approaches to highlight their 

respective advantages and limitations. This analysis forms a robust foundation for 

understanding and selecting the most appropriate modeling approach for FASTEST 

PROJECT. 

Delving deeper into physics-based modeling techniques, the significance of 

advanced models such as P2D, SPMe, and SPM is accentuated. These models are 

enhanced by incorporating ageing mechanisms and thermal aspects, representing 

a qualitative leap in the ability to predict and understand battery behavior under 

various operational conditions. Validating these models through correlation with 

experimental data is crucial to verify their accuracy, reliability, and practical 

applicability in predicting performance, thermal behavior, and ageing 

characteristics of batteries. Moreover, the project extends its scope to module-level 

modeling, integrating diverse and advanced modeling approaches, including 

mechanical aspects, and presenting electro-thermal and mechanical models that 

push beyond the current state-of-the-art. 

This deliverable concludes with an assessment of key achievements and learnings, 

laying the groundwork for future research and applications of the models in the 

battery industry. 
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3. INTRODUCTION 

In the realm of contemporary battery technology, the evolution towards more 

efficient, safe, and long-lasting energy storage systems is paramount. FASTEST 

project embarks on an ambitious journey to revolutionize landscape batteries 

through advanced modeling and virtualization techniques. Deliverable 3.1, a 

pivotal component of this initiative, aims to redefine the approach to battery 

testing and evaluation. 

This deliverable focuses on the development and validation of a multiscale, high-

fidelity modeling paradigm, designed specifically for virtualizing the physical 

testing of batteries. The objective is to construct and validate models that 

accurately simulate the electrochemical, thermal, and mechanical behavior of 

lithium-ion batteries at both the cell and module levels. Embracing a range of 

modeling methodologies, including empirical, physics-based, and data-driven 

approaches, this initiative seeks to offer a comprehensive toolkit for predicting 

battery performance under diverse operational conditions. 

A key aspect of Deliverable 3.1 is the enhancement of traditional modeling 

techniques. This includes advancing physics-based models such as P2D, SPMe, and 

SPM, and integrating ageing mechanisms and thermal effects. Such advancements 

aim to create a more detailed and accurate representation of battery behavior, 

particularly under stress or during extended usage. 

Additionally, the deliverable emphasizes the importance of rigorous model 

validation against experimental data. This process is critical to ensuring the 

reliability and practical applicability of the models for both existing and emerging 

battery technologies. The validation encompasses various aspects, including 

performance, thermal response, reliability and aging characteristics, thereby 

affirming the models' predictive accuracy and utility. 

Deliverable 3.1 represents a collaborative effort within the FASTEST project, 

leveraging the diverse expertise of its partners. This collaboration is not just about 

resource pooling but also about embracing a multidisciplinary approach to address 

the complexities of battery modeling. The outcomes of this deliverable are 

expected to significantly contribute to the overarching goals of the FASTEST 

project, setting new benchmarks in battery testing and development, and 

advancing the field towards more sustainable and efficient energy solutions. 
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4. CELL LEVEL MODELLING 

This section is dedicated to the exploration and evaluation of various modelling 

approaches that are employed to understand and predict the behavior of battery 

cells. In the realm of battery system development, accurate cell level modelling is 

indispensable for optimizing performance, safety and longevity.  

Each approach offers a unique lens through which the intricate working of battery 

cells can be examined and characterized. Empirical models rely on observed 

behavior to formulate predictions, physics-based models use the foundational laws 

of electrochemistry and thermodynamics to capture the internal processes, and 

data-driven models apply sophisticated algorithms to harness the power of big 

data for predictive analytics.  

The discussion in this section is not just theoretical but is underpinned by practical 

examples and case studies that demonstrate the application and efficacy of each 

modelling type. Through this comprehensive analysis, the aims to establish a 

versatile and robust modelling framework. 

 

4.1 Types of modeling 

In the dynamic field of battery technology, understanding and predicting battery 

behavior is crucial for innovation, efficiency, and safety. The modeling of batteries, 

a cornerstone of modern energy storage systems, involves a variety of approaches, 

each with its unique methodology and focus. These modeling techniques play a 

pivotal role in battery management systems, design optimization, and the 

advancement of battery technology. 

Modeling approaches can be broadly categorized into different types such as 

empirical models, physics-based models, and data-driven models. Each of these 

approaches offers distinct insights and tools for addressing the complex nature of 

battery operation. While empirical models provide quick and practical solutions for 

real-time applications, physics-based models offer a deeper understanding of the 

internal electrochemical processes. On the other hand, data-driven models, 

leveraging the power of machine learning and big data, bring a new dimension to 

battery modeling, capable of handling vast and complex datasets to predict battery 

behaviour. 

Understanding the strengths, limitations, and best use cases for each of these 

modelling types is crucial for researchers, engineers, and technologists working in 

the field of battery technology. The following sections delve into the specifics of 

each modelling type, providing a comparative overview that highlights their 

characteristics, principles, and how they integrate and complement each other in 

practical applications. 
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4.1.1  Empirical Models 

Characteristics and Principles:  

• Empirical models are based on correlating experimental data with output 

results, using mathematical and statistical formulas. 

• They focus on the direct relationship between observed inputs and outputs, 

rather than on the underlying mechanisms governing battery behavior. [1] 

Integration and Complementarity: 

• In practice, they are used in applications where speed and simplicity are 

essential, such as in real-time control algorithms and battery management 

systems. 

• Often, they are combined with more complex models to provide a quick 

initial approximation or to validate results in specific operational situations. 

Application: 

The Thevenin model is a widely recognized empirical model in the realm of electric 

vehicle battery management systems. It stands out for its simplicity and 

effectiveness in real-time applications. By representing the battery as an 

equivalent circuit comprising resistors and a voltage source, this model enables 

the efficient estimation of critical parameters such as the State of Charge (SoC) 

and State of Health (SoH). This approach is not only fundamental in providing real-

time data to drivers but also plays a key role in the overall management and 

longevity of the battery system. [2]  

 

4.1.2  Physics-Based Models 

Characteristics and Principles: 

• These models are grounded in physical and chemical laws, such as mass 

and energy conservation equations and electrochemical dynamics. 

• They provide a detailed and accurate description of internal processes, from 

ionic dynamics to electrochemical reactions. [3] 

Integration and Complementarity: 

• Essential in research and development, where a deep understanding of the 

internal workings of the battery is required for innovation and optimization. 

• Often used in combination with empirical and data-driven models to 

calibrate parameters and validate predictions under real operational 

conditions. 
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Application: 

The Pseudo-Two Dimensional (P2D) model, commonly referred to as the Newman 

model, is a cornerstone in the field of battery materials research and development. 

This model provides a comprehensive view of the electrochemical processes within 

a battery cell, including ion transport and reaction kinetics. By allowing for detailed 

simulations and predictions of how changes in materials and design affect battery 

performance, the P2D model is instrumental in guiding the development of more 

efficient and durable battery cells. Companies utilize variations of this model to 

optimize the energy density, power capacity, and lifespan of batteries used in a 

wide range of applications, from consumer electronics to electric vehicles. 

4.1.3  Data-Driven Models 

Characteristics and Principles: 

• These models apply machine learning algorithms and statistical analysis to 

discern patterns and predict behaviours from large volumes of data. 

• Their focus is on adaptability and prediction, rather than on a detailed 

understanding of the underlying processes. [4] 

Integration and Complementarity: 

• Particularly useful in environments where a massive amount of operational 

data is available and significant information for prediction and analysis is 

sought. 

• Can be used in conjunction with physical models to provide adaptive 

forecasts and explore new horizons in battery performance and degradation 

under various conditions. 

Application: 

In the management of large-scale energy storage systems, such as those used in 

grid storage or large industrial applications, data-driven models are increasingly 

playing a vital role. These models, often based on sophisticated machine learning 

algorithms, analyze vast datasets encompassing usage patterns, environmental 

conditions, and operational parameters. For instance, Tesla's Powerpack system 

employs such models to optimize the performance and longevity of its storage 

units. By predicting battery degradation and dynamically adjusting operational 

strategies, these models not only enhance the efficiency and reliability of the 

storage system but also reduce maintenance costs and extend the operational 

lifespan of the batteries. [4]. A comparison of the models with their respective 

advantages and disadvantages is shown in Table 1 below. 
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Type of Mode 
Description and 

Applications 
Advantages Disadvantages 

Empirical 
Models 

Based on statistical 

correlations from 
experimental data. 

Used in real-time 
control and battery 

management 

systems. 

- Simplicity and 
speed 
  

- Low computational 
cost 

  
- Effective for 

specific applications 

- Limited to 
available data 

  
- Do not explain 

internal processes 
  
- Poor 

extrapolation 
capability 

Physics-

Based Models 

Grounded in 
physical and 

chemical principles. 
Essential in R&D, 

design, and 

optimization of 
batteries. 

- High level of detail 

and accuracy 
  

- Useful for 
innovation and 
optimization 

  
- Robust predictive 

capacity 

- Complex and 
computationally 
expensive 

  
- Require accurate 

data for calibration 
  
- Less practical in 

real-time 
applications 

Data-Driven 
Models 

Use machine 

learning to identify 
patterns in large 

data sets. Applied in 
predictive analysis 

and advanced 

monitoring. 

- Flexible and 
adaptable 
  

- Handle complex 
systems 

  
- Useful for large 

data sets 

- Dependent on 
data quality 
  

- "Black box" with 
little physical 

interpretation 
  

- Risk of overfitting 

Table 1. Model comparison 

 

4.2 Physics-based modeling 

This model is based on the mathematical framework developed by Newman et al. 

[5, 6, 7, 8]. The model can simulate any insertion cell if physical properties and 

system parameters are given, and is based on the porous electrode and 

concentrated solution theory. It is not possible to describe perfectly the complex 

multiphysic behaviour of batteries, and for this reason a clarification of the 

continuum model approach and model assumptions must be well defined to 

establish the model framework. More detailed information on the P2D model 

description can be found in [9]. This continuum model consists of a 1-D 

macroscopic model coupled with a pseudo dimension that is represented Figure 1. 

Schematic representation of the electrochemical model on a full-cell configuration 
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The macroscopic description of this model is defined by volume averaging over 

small finite volume units of microscopic quantities. As a result, the electrodes are 

considered as the superposition of two continua, representing the solid and the 

liquid phases. Moreover, the electrodes are considered as porous matrices of 

electrochemically reactive and electrically conductive solids. The model assumes 

that the electrolytic solution completely fills the voids of the porous solid matrix. 

This means that solid and liquid matrices are considered separately. The 

microscopic level describes the active material particles and is represented in the 

pseudo-dimension (see in Figure 1), and each electrode has one domain and two 

boundaries in which R = 0 corresponds to the particle core and R = 1 to the particle 

surface. Microscale geometries are described assuming volume-averaging 

theorems. 

The P2D model consists of a group of nonlinear partial differential equations and 

algebraic equations (PDAEs) that are derived from the concentrated solution 

theory, the porous electrode theory, and a coupled kinetic equation for lithium-ion 

and electron exchange. The P2D model solves spatial and time evolution of five 

variables: (1) Potential (𝝓𝒔(x, t)) of lithium in the solid particles; (2) Concentration 

(𝒄𝒔(x, r, t)) of lithium in the solid particles, specifically on the surface of the solid 

(𝒄𝒔,𝒆 (x, t)); (3) Potential (𝝓𝒆(x, t)) of lithium in the electrolyte; (4) Concentration 

(𝒄𝒆(x, t)) of lithium in the electrolyte and (5) Flux of lithium out of a particle (𝒋(x, 

t)). 

 

Figure 1. Schematic representation of the electrochemical model on a full-cell configuration 

 

Blue represents the pseudo-dimension (r) in which a particle is presented. Black 

represents the 1D dimension (x) of the model, thicknesses of the components of 

the cell (3 domains and 4 boundaries). Green represents y and z dimensions that 

are used to calculate the cross-sectional area. CE: counter electrode; RE: 

reference electrode; WE: working electrode. The main equations with parameters 

(green) and variables (blue) highlighted in colours are shown. 
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In the governing equations, several assumptions are needed to describe the porous 

media of the electrodes and separator, commonly, the particles are assumed to be 

spherical, with uniform size and homogeneously distributed through the electrode. 

The porous media is accounted correcting the parameters with the Bruggeman 

exponent considering a non-ideal path through the electrode. Several authors have 

proposed modifications to the P2D model equations enhancing the model 

predictions. Some of the most relevant contributions deals with the introduction of 

particle size distributions [10, 11, 12], concentration dependent parameters [13], 

or by accounting properties of blended materials [14, 15, 16]. The inclusion of 

particle size distribution (PSD) [11, 12, 13] can improve the accuracy of model 

predictions, especially at higher C-rates and for heterogeneous electrodes. Blended 

materials on positive or negative electrodes have been included in next-generation 

LIBs to achieve higher energy densities [14, 15, 16, 17]. Carelli et al. [17] 

developed a model that considers a positive active material blend between LCO 

and NCA for a commercially available cell. They [17] claim that there is a big gap 

into exhaustive parametrisation of blend materials to decouple both material 

contributions. 

In the FASTEST project, one of the main concerns to use physics-based models 

(PBMs) into testing virtualization (or in other cases in real-time and control-

oriented applications), is the high computational cost and complexity of these 

models [18]. To reduce the computational cost, different simplifications have been 

proposed in the literature [19, 20, 21, 22, 23, 24]. 

The most widely used simplification of the P2D model is the Single Particle Model 

(SPM) [19]. The most relevant differences with the P2D are: (1) The electrolyte 

dynamics are neglected (this means that the solid-phase diffusion is assumed to 

be the slowest process and its dynamics are dominant); (2) The positive and 

negative electrodes are represented by a single average spherical particle; and (3) 

the lithium flux has a linear dependency with the input current. This model 

presents lower accuracy than the P2D model, especially at mid-high rates, since 

the electrolyte dynamics become more relevant [19, 20]. To overcome the SPM 

drawbacks, some authors extended the SPM to include the electrolyte dynamics 

[20, 21]. These models are called extended single particle models (ESPMs) or 

single particle models with electrolyte dynamics (SPMe-s). A canonical SPMe was 

derived by Marquis et al. in [20], using asymptotic reduction techniques, which 

was proven to be more accurate than the previously developed SPMe-s, which used 

ad-hoc assumptions to add correction terms to the SPM to consider the electrolyte 

dynamics.  Marquis et. al [20] compared the P2D, SPM and SPMe models. The 

computational cost of the SPMe and SPM was shown to be significantly lower 

compared to the P2D model, and the SPMe improved the accuracy of the SPM 

considerably, especially at mid-high C-rates (studied up to 3C). Moreover, unlike 

the SPM, the SPMe maintains all the variables solved by the P2D model, at a similar 

computational cost of the SPM. 

In addition to simplifying the P2D model to get the SPM or SPMe models explained 

above, model order-reduction (MOR) techniques could be employed in all these 

models to reduce its computational cost. Those techniques are out of the scope of 
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this deliverable as they will be part of the next FASTEST project tasks. However, 

in this section, a brief clarification of the differences between simplification and 

order reduction have been included. MOR techniques are methods that reduce the 

computational complexity of the models without adding any assumption to the 

original model. The main goal of MOR techniques is to obtain a ROM that keeps 

the same information of the (full-order-model) FOM but with lower computational 

burden. The PDAEs are approximated into lower order systems of ODEs and 

algebraic equations. Therefore, the computational efforts to obtain the time and 

space dependent solution can be drastically decreased. The main advantage is that 

they retain all the information of the internal states. 

 

4.3 Extension to account for thermal aspects 

Additionally, the P2D model can extend its validity range and predictive ability 
including thermal and ageing models. For thermal modelling, the most widely 

approach consists of adding two more variables in the original model, the heat and 
temperature. A macroscopic equation relates the heat generated at the microscale 
with the temperature variation across the cell [25, 26, 27]. Pals and Newman [28, 

29] presented a one-dimensional thermal-Electrochemical model that added the 
energy balance equation in the form given by Bernardi et al. [30]. If the 

temperature is considered uniform within the cell, which is valid in small format 
cells [31], the macroscopic equation relates the heat generated and the 
temperature variation by averaged and macroscopic properties in the following 

form:  

 

 

 

This equation includes three parameters related to thermal characteristics: density, 

𝜌, heat capacity, 𝐶𝑝, and the convective heat transfer coefficient, h. Moreover, the 

temperature dependence of the electrochemical parameters is introduced by 

Arrhenius’ law [32]. The heat generation rate, 𝑞𝑔𝑒𝑛, has four main contributions 

related to the microscopic scale: (1) the heat generated for kinetic reactions, (2) 

the reversible heat generation due to entropy changes in the electrode active 

material during lithium intercalation/de-intercalation, (3) the electronic and ionic 

ohmic heat generation due to the transport of lithium ions, and (4) the Joule ohmic 

heat due to the contact resistance at the boundaries [33].  

The electrochemical model coupled to the macroscopic thermal equation works 

well for small format cells where the temperature gradient along the cell is 

relatively small, or when the cell is not under heavy directional cooling rates [34]. 

For large format cells or for battery packs, other modelling approaches can be 

examined which are discussed within the module level modelling. 
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4.4 Degradation phenomena and modelling approaches 

This section will present modelling approaches to the modelling of the degradation 

phenomena inside the electrochemical cells and can be applied to the project’s 

specified cell chemistry and cell generation. Since the current deliverable is due in 

the early stages of the project and the experimental results on the degraded cells 

will be available in the later stages of the project (with some of them being also 

under IP protection), the presented approaches will serve as a theoretical guideline 

for selection and later development of the relevant aging mechanisms and 

corresponding models. 

4.4.1 Introduction 

Li-ion batteries are an example of electrochemical devices with complex intra-cell 

transport, electrochemical, thermal and degradation phenomena. With time and 

increasing number of cycles, the performance and the capacity of the battery 

decreases. There are several factors that have an impact on the battery 

degradation and can be a consequence of chemical mechanisms (e.g., side 

reactions) and physical mechanisms (e.g., thermal stress and mechanical stress) 

[35]. Figure 2 schematically presents the main degradation phenomena in Li-ion 

batteries which can be attributed to every major component of the electrochemical 

cell, i.e., active material, electrolyte, additives and current collectors.  

 

Figure 2. Schematic representation of the main degradation phenomena in Li-ion batteries. Source: 
[35]. 

The basis for accurate modelling of the degradation is an electrochemical 

performance PxD model with high fidelity in terms of modelling transport, electric 

and thermal phenomena [36] since they are strongly coupled with the degradation 

models. 

4.4.2 LFP transport properties and aging 

On the case of the cathode material LiFePO4 (LFP) which is inherently phase 

separating material, we demonstrated significant deviations in transport properties 

for such materials and morphologies of secondary particles [37]. At low 
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charge/discharge currents particle-by-particle (de)lithiation occurs [38] where 

only a fraction of the electrode material is being active and therefore experiences 

significantly higher current densities compared to the electrode materials without 

the phase separation. Additionally, due to the inter-particle phase separated 

states, a partial cycling can occur during a single charge or discharge to the part 

of the active material. In [36] we further demonstrated that such effects generate 

additional contributions to the overall heat generation from the level of the 

electrochemical cell which decisively influence the entire chain of mechanisms that 

can lead to the outbreak of the thermal runaway of the battery. 

LFP features a relatively stable crystal structure. Therefore, the capacity loss is 

mainly ascribed to the consumption of Li on the anode side [39, 40] (surface of 

the graphite and Silicon) for SEI growth and regeneration induced by graphite’s 

inner structural deterioration or volume expansion of Silicon particles. However, 

Sun et al. [40] also demonstrated with XRD measurements that high discharge 

rates have indeed a negative effect on the structure of LFP cathode material. 

4.4.3 Growth of the SEI layer 

Solid Electrolyte Interphase (SEI) layer is formed during the formation cycles of 

the fresh battery on the surface of the anode active material (anode side in the 

Figure 2). Due to the low operating potential of the anode (around 0.2 V), reaction 

products of Li+, Li salt (e.g., LiPF6) and carbonate solvent (e.g., ethylene 

carbonate, EC) form SEI layer [41] which protects the anode from the electrolyte. 

This initial loss of Li inventory must be accounted for when designing a battery for 

proper electrode balancing. Furthermore, morphology of the initial SEI layer 

significantly impacts performance and longevity of the battery. 

The growth of the SEI layer in the PxD electrochemical models is modelled with 

the Tafel ansatz (e.g., reference [42]) with assumption that SEI grows evenly on 

the surface of the particles, and which can be written as  

𝑗𝑆𝐸𝐼 =
1

𝑎𝑒
𝐴𝑆𝐸𝐼𝑐𝑠𝑢𝑟𝑓

𝐸𝐶 exp (−
𝛼𝑆𝐸𝐼𝐹

𝑅𝑇
𝜂𝑆𝐸𝐼), 

where 𝑎𝑒 represents specific surface of the active material, 𝐴𝑆𝐸𝐼 represents SEI 

formation reaction frequency factor, 𝑐𝑠𝑢𝑟𝑓
𝐸𝐶  represents concentration of ethylene-

carbonate (EC) organic solvent at the particle’s surface, 𝛼𝑆𝐸𝐼 represents charge 

transfer coefficient for the SEI electrochemical reaction, and finally 𝜂𝑆𝐸𝐼 represent 

the overpotential for the SEI formation reaction. The overpotential can be written 

as 

𝜂𝑆𝐸𝐼 = Φ𝑠 − Φ𝑒 − 𝑈𝑆𝐸𝐼 + 𝐹
𝜔𝑆𝐸𝐼𝛿𝑓𝑖𝑙𝑚

𝜅𝑆𝐸𝐼 𝑗𝑡𝑜𝑡, 

where Φ𝑠 and Φ𝑒 represent solid and liquid phase potential, respectively, and 

couple PxD performance model solutions for both potentials and degradation 

model. Furthermore, 𝑈𝑆𝐸𝐼 represents standard potential of SEI layer, 𝜔𝑆𝐸𝐼 

represents volume fraction of the SEI in the film, where film contains SEI and 
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plated Li with thickness of 𝛿𝑓𝑖𝑙𝑚 and conductivity of SEI layer 𝜅𝑆𝐸𝐼, finally 𝑗𝑡𝑜𝑡 

represents total molar flux consisting of intercalation flux and fluxes related to the 

side reactions. Under the approximation of the thin film compared to the size of 

an active particle, the 𝑐𝑠𝑢𝑟𝑓
𝐸𝐶  on the particle’s surface can be calculated with the 

following linearised diffusion equation: 

𝐷𝐸𝐶
𝑐0

𝐸𝐶 − 𝑐𝑠𝑢𝑟𝑓
𝐸𝐶

𝛿𝑓𝑖𝑙𝑚
= 𝑗𝑆𝐸𝐼 , 

where 𝐷𝐸𝐶 represents diffusion coefficient of EC in the film and 𝑐0
𝐸𝐶 represent 

concentration of EC in the bulk electrolyte. 

Exhaustive overview of the mechanisms and modelling approaches to the SEI 

growth can be found in the following references [43, 44, 45]. 

4.4.4 Plating of the metallic Li 

Plating of the metallic Li on the anode’s active material is highly undesirable side 

reaction which occurs when anode potential drops below 0 V vs. Li/Li+. In this case 

the plating of Li on the active material’s surface is thermodynamically more 

favourable compared to the intercalation [46, 47]. Certain conditions have to be 

fulfilled for this phenomenon to occur during charging, namely high charging 

currents [48], low temperatures [49] and high SoC (i.e. high lithiation levels in the 

anode particles) [50]. Virtual sensing of the anode potential will play a vital role in 

the next-generation battery management systems (BMS) in preventing Li-plating 

under fast charging regime and therefore increasing the longevity and safety of 

the batteries. 

Yang et al. [42] presented one of the first models of Li-plating coupled also with 

the growth of the SEI layer. The presented model of Li-plating is based on the Tafel 

equation which implies irreversible loss of cyclable Li during the Li-plating.  

 

Figure 3. Schematic representation of the Li-plating and Li-stripping. Source [46]. 
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Ren et al. [46] presented an upgraded model which accounts also for reversible Li 

(so-called Li-stripping phenomenon) alongside the irreversibly lost Li (Figure 3) by 

utilising the Butler-Volmer equation 

𝑗𝐿𝑃𝐿 = 𝑖0
𝐿𝑃𝐿 (exp (

𝛼𝑎𝐹

𝑅𝑇
𝜂𝐿𝑃𝐿) − exp (

𝛼𝑐𝐹

𝑅𝑇
𝜂𝐿𝑃𝐿))

𝛽𝑛𝐿𝑖,𝑟𝑒𝑣

1 + 𝛽𝑛𝐿𝑖,𝑟𝑒𝑣
, 

where 𝜂𝐿𝑃𝐿 represent overpotential for Li-plating and the 
𝛽𝑛𝐿𝑖,𝑟𝑒𝑣

1+𝛽𝑛𝐿𝑖,𝑟𝑒𝑣
 represents the 

correction term [46] determining amount of plated Li to be reversibly stripped 

during discharging of the battery in the electrolyte via the electrochemical reaction. 

 

4.4.5 Mechanical stresses 

During (de)lithiation electrode materials experience different volume expansions 

resulting in mechanical stresses on the level of a single electrochemical model as 

well as on the battery and module level. The most prominent example of the 

electrode material with high volume change is Silicon (Si). Due to its high specific 

capacity (3579 mAh/g) and low open circuit potential against Li/Li+ it is considered 

as the most rational way to overcome the theoretical capacity limit of the 

commonly used graphite and to accelerate the development of high energy Li-ion 

batteries [51]. This is done by combining both materials in different mass fractions 

resulting in a so-called Si/Graphite blended electrode.  

 

Figure 4. The main degradation processes of Silicon due to its high volume expansion. Source [52]. 

However, due to the high-volume expansion (see Figure 4) Si particles can crack 

or pulverize and expose new surface for additional SEI growth and consequent loss 

of cyclable Li. Furthermore, particles can lose contact with the conduction paths 

for the electrons [53] and becoming inactive, resulting in capacity loss of the 

battery. Additionally, repetitive expansions and contraction of silicon particles can 

damage fragile SEI layer and making it unstable [52]. Yang et al. [54] investigated 

the effect of weight ratio in the Si/graphite blended electrode and discovered that 

extent of surface cracking appears to be proportional to the amount of silicon in 

the electrode.  
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Figure 5. Open circuit potential of (a) graphite and (b) silicon. Source [55]. 

In a blended electrode, exchange or crosstalk of Li-ions is possible between the 

electrode materials if the component materials have different working potentials 

(comparison of OCPs of graphite and Silicon is shown in Figure 5) [56]. During 

constant-current charging, the silicon tends to be preferentially lithiated. During 

constant-current discharging graphite is preferentially delithiated until about 50% 

state-of-charge (SOC) is reached. Silicon then carries the bulk of the charge [54, 

56]. It is important therefore that the different open circuit potential of both 

materials is accounted for to adequately model transport and coupled degradation 

phenomena due to stress/strain contributions in a blended Si/Graphite electrode.  

Modelling of a three-dimensional (3D) physics-based system for Silicon/graphite 

blended electrodes was performed by Liu et al. [57]. Their detailed model couples 

electrochemistry and mechanics using as input electrode mesostructures obtained 

from manufacturing-related Coarse-Grained Molecular Dynamics models [57]. 

General coupled 1D transport and stress/strain contribution in electrode material 

𝑘 with spherical geometry was proposed by Bonkile et al. [53] and can be modelled 

with the following equation  

𝑑𝑐𝑘

𝑑𝑡
= 𝐷𝑘

𝑒𝑓𝑓
[
𝑑2𝑐𝑘

𝑑𝑟𝑘
2 +

2

𝑟𝑘

𝑑𝑐𝑘

𝑑𝑟𝑘
+ Θ𝑀,𝑘 (

𝑑𝑐𝑘

𝑑𝑟𝑘
)

2

+ Θ𝑀,𝑘𝑐�̅� (
𝑑2𝑐𝑘

𝑑𝑟𝑘
2 +

2

𝑟𝑘

𝑑𝑐𝑘

𝑑𝑟𝑘
)], 

where the contribution Θ𝑀,𝑘 from stress/strain evaluates as  

Θ𝑀,𝑘 =
Ω

𝑅𝑇

2Ω𝐸

9(1 − 𝜈)
 

with Ω representing partial molar volume, 𝐸 representing Young’s modulus and 𝜈 

representing Poisson’s ratio. 
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4.4.6 Gas evolution 

Formation of the gaseous species inside the battery is another phenomenon in 

series of unwanted side reactions. Different gaseous species form in specific 

electrode due to decomposition of liquid electrolytes used in Li-ion batteries. 

Reaction depends on the local electrode potential and on whether the electrode is 

being lithiate or delithiated. For example, CO, C2H4, CO2, and H2 are formed at 

negative electrode due to electrolyte reduction, whereas electrolyte oxidation 

produces CO2 at the positive electrode [58, 59]. 

Rashid et al. [60] presented a coupled SEI growth and gas evolution model based 

on the cathodic Tafel equation: 

𝑗𝑔𝑎𝑠 = −
1

𝑎𝑒
𝑖0

𝑔𝑎𝑠
exp (

𝛼𝑐𝐹

𝑅𝑇
𝜂𝑔𝑎𝑠) , 

where overpotential for formation of the gaseous species on the anode side is 

defined as 

𝜂𝑔𝑎𝑠 = Φ𝑠 − Φ𝑒 − 𝑈𝑔𝑎𝑠 + 𝐹
𝜔𝑆𝐸𝐼𝛿𝑓𝑖𝑙𝑚

𝜅𝑆𝐸𝐼 𝑗𝑡𝑜𝑡, 

where similarly as before, Φ𝑠 and Φ𝑒 represent solid and liquid phase potential, 

respectively and 𝑈𝑔𝑎𝑠 represents standard potential of formation of the gaseous 

species. Under the assumption that gaseous species fill the electrolyte pores, the 

change in volume fraction 𝜖𝑔𝑎𝑠 of gaseous species can be calculated with the 

following equation: 

𝜕𝜖𝑔𝑎𝑠

𝜕𝑡
= −

𝑗𝑔𝑎𝑠𝑉𝑔𝑎𝑠

𝑛𝐹
, 

where 𝑉𝑔𝑎𝑠 represents volume occupied by the gaseous species. 
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5. MODULE LEVEL MODELLING 

This section advances the discourse from individual cells to the complexities of 

Module Level Modelling. This pivotal section addresses the challenges and 

methodologies associated with modelling battery modules, where multiple cells 

interact within a larger, more complex system. Accurate module level modelling is 

a cornerstone for ensuring the scalability of battery technologies from the 

laboratory to real-world applications. 

It explores an array of modelling techniques tailored to capture the multifaceted 

dynamics of battery modules. These models must account for the interactions 

between cells, thermal management requirements, electrical connections, and 

mechanical constraints, all of which contribute to the overall performance, safety, 

and durability of the battery module. The section emphasizes the importance of 

transitioning from cell-specific insights to the broader implications at the module 

level, ensuring that models can scale up effectively without losing the fidelity of 

predictions. 

5.1 Types of modeling 

5.1.1 Thermal analysis 

Thermal models of a battery module can be of different types. On the one hand, 

empirical models are based on experimental data and regression analysis. These 

models are not based on physical equations, and therefore do not need to be fed 

by the physical properties of the cells [61]. This can make it difficult to predict 

thermal behavior when extrapolating operating conditions or cells’ physical 

properties. On the other hand, lumped parameter models simplify heat transfer by 

means of resistances, capacitances, and thermal loads networks. In this way, the 

temperature distribution is determined by considering averaged values over the 

defined elements [62]. Although it may be relatively simple to apply, the thermal 

results obtained lack spatial resolution. As an alternative, the finite element 

analysis (FEA) and computational fluid dynamics (CFD) allow the 3D temperature 

distribution to be evaluated in a more detailed way in more complex geometries 

[63]. 

In FEA models only diffusion heat transfer is considered, while CFD models 

consider the fluid dynamic equations to analyze conjugate heat transfer. Therefore, 

high-fidelity CFD models are of particular interest when the interaction between a 

surface and a fluid, such as the cooling system of a battery pack, needs to be 

analyzed. Usually, the computational cost of CFD models is high. It is worth 

mentioning that CFD models allow the coupling of physics-based models (PBM) 

that analyze in detail the electrochemical interactions of the cell, such as the P2D 

model. However, there is a risk of excessively increasing the cost of the already 

expensive CFD models. Alternatives have been proposed to reduce this 

computational cost by use [64]. 
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5.1.2 Mechanical structural analysis 

To assess the structural reliability of battery modules, the analysis is focused on 

the module resistance to shock and vibrational fatigue conditions and finite 

element methods (FEM) are used for the calculations. To predict the vibrational 

fatigue resistance, however, further analysis is needed and welded joint 

geometries, materials and resistance against cyclic loading must be considered. 

In [65], a FEM modal analysis of a battery module having prismatic cells is 

developed. The deformations of the module geometry at natural frequencies are 

evaluated but a reliability analysis is not performed since the resistance of weak 

details such as welded joints are not evaluated. The performance of a multi-

material battery pack structure is evaluated through random vibration fatigue FEM 

analysis [66]. The cumulative fatigue damage and lives of each component are 

predicted but structural weak details such as welded joints are not considered in 

the analysis. Although different methods for the cyclic loading fatigue analysis of 

welded joints are exposed in [67], the accuracy of these approaches for vibrational 

fatigue analysis has not been evaluated yet. Therefore, a method to evaluate the 

effect of vibrational fatigue in welded joints as the weak points of the battery 

modules is lacking in the literature. 

5.2 Description of electro-thermal model 

 

Maintaining lithium-ion batteries in their optimum temperature range is essential 

to maximize performance and ensure safety. The most important effects affecting 

the working temperature of lithium-ion batteries are internal heat generation and 

environmental conditions [68]. The total internal heat generation in cells is due to 

the contribution of irreversible and reversible generation. This total generation 

depends mainly on the applied current, the operating temperature and the state 

of charge (SOC). Thus, fast charging will generate more heat in the batteries. On 

the other hand, extreme environmental conditions (hot and/or cold) can affect the 

working temperature of the cell, leading to accelerated degradation and/or safety 

problems. 

For temperature control, batteries are usually equipped with a battery thermal 

management system (BTMS). Taking the electric vehicle sector as a reference, at 

battery module level, the thermal management system (BTMS) usually involves a 

flow of a fluid (gas or liquid) whose objective is to absorb or provide the desired 

heat to ensure that the cell is in its optimal temperature range [69]. Thus, the 

main challenges facing thermal models of lithium-ion batteries at the module level 

are, on the one hand, the prediction of heat generation under different operating 

conditions; and on the other hand, the resolution of heat transfer between the 

active elements (cells) and the fluid. 

As previously mentioned, CFD models allow to solve in a coupled way the 

electrochemical behavior and fluid dynamic equations with a high degree of 3D 
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spatial resolution. Considering the commercial CFD software Ansys-Fluent, the 

electrochemical behavior is considered by multi-scale, multi-domain (MSMD) 

simulations [70]. Among the different MSMD methods, the P2D physics-based 

model (previously described in section 4.2) provides as a result, among other 

relevant variables, the internal heat generation [6]. 

Considering the heat generation obtained from the P2D model, there are several 

methods to determine the temperature field macroscopically [71] [72]. However, 

these methods present limitations when the internal gradients in the cell are high, 

since the heat diffusion is considered to occur homogeneously in the different 

layers [73]. An alternative proposed in this project are local 3D simulations 

considering the heterogeneous thermo-physical properties between the different 

layers of the cell. In this way, considering a thermal model coupled to the P2D 

model, the generation and the inhomogeneous heat transfer will be considered 

locally. The local heat diffusion behavior will be extrapolated to the whole cell 

considering heterogeneous and anisotropic properties in different zones of the cell. 

Once the procedure for optimally resolving internal heat generation and diffusion 

has been defined, the CFD thermal model at the module level must resolve the 

heat transfer between the heat sources and the fluid. Depending on the method 

used for thermal management, the level of coupling between heat generation and 

heat transfer will vary. As an example, the development of the flow of a fluid 

through a cold plate that is responsible for cooling a battery module can be 

analyzed with little consideration of coupling between the fluid and the 

electrochemical behavior of the cell [74]. In this sense, to reduce the high 

computational cost of CFD models that solve the heat transfer to the fluid 

(especially in relatively large geometries and/or transient calculations), it is 

possible to use reduced order methods. Among these MOR techniques for fluid-

dynamics simulations, the Lower Order Models Method  or order reduction 

techniques based on modal analysis; and the method based on parametric 

simulations [75] can be mentioned. 

Finally, in this project it is proposed that the final coupled thermal model of the 

battery module be solved sequentially. The faster dynamics related to the 

electrochemical behavior of the cells will be solved by reduced order P2D models. 

The heat generation will be the input of the thermal model of the battery module, 

with slower dynamics, which will solve the heat transfer to the fluid by reduced 

order CFD model. 

  

5.3 Description of the mechanical model 

Battery structures are subjected to three types of loading conditions [76].On the 

one hand, to the swelling effect during charge and discharge cycles, where axial 

stresses are created in the battery structure and connections due to the volumetric 

changes of the cells. The swelling effect at the beginning (BoL) or at the end (EoL) 

of the service life may be different. On the other hand, batteries are also exposed 

to vibrations due to, for example, road irregularities or engine movements during 
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their life cycle. Vibrational loads can lead to fatigue failure of the battery 

connections (e.g. welding of terminals) and, therefore, battery life [77]. Finally, 

battery shocks due to sudden acceleration or deceleration situations that affect the 

strength of the battery also occur. 

While swelling effect varies depending on the battery life, either vibrational loads 

or shock situations may occur at any moment during the battery life. The swelling 

effect produces an internal pressure in the battery that affects the behaviour of 

the battery structure against vibrational fatigue or shock loading conditions. Thus, 

BoL and EoL battery conditions to be analysed should be defined before shock or 

vibrational fatigue modelling. 

Finite Element Modelling (FEM) method is used for the structural analysis of battery 

modules and statistical approaches are applied for the lifetime prediction of 

batteries due to vibrational fatigue loading conditions. 

 

5.3.1 Swelling 

Before vibrational and shock analysis are made, a structural preconditioning of 

modules due to swelling effect of cells must be performed. To do so, a static 

structural analysis must be carried out modelling the constituent parts of battery 

modules in terms of geometry and materials [78]. Vibrational and shock analysis 

will be based on the swelling modelling results. 

5.3.2 Vibrational fatigue analysis 

For the vibrational fatigue analysis, a modal analysis is necessary after the static 

structural analysis. Then, the power spectral density (PSD) or the acceleration 

spectral density (ASD) profile of the load is defined [79] and the stress frequency 

response function (FRF) of the unitary load [80] is calculated through the harmonic 

analysis. Afterwards, stress cycles in the frequency domain are calculated using 

the Probability Density Factor (PDF) methodology [81] [82]. Finally, using S-N or 

E-N curves the damage (D) caused by the loads in welded connections is 

evaluated. Connection failure occurs when the damage takes the value 1 and the 

fatigue life (1/D) of can be calculated. The flowchart for the calculation of fatigue 

analysis due to random vibrations is shown in Figure 6. 

 

 

Figure 6. Proposed method for vibrational fatigue analysis. 
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1. Modal analysis: 

Modal analysis allows the identification of specimen resonances and deformation 

modes. Vibrational fatigue analysis is based on damage due to natural frequency 

stress spikes in the FRF, so it is necessary to have at least one resonance within 

the excitation band to cause vibration damage. The participation factor can also 

be obtained through this analysis, which determines the importance of each 

deformation mode in the dynamic behaviour of structures. 

2. Harmonic analysis: 

The stress FRF response under unitary load must be analysed to evaluate the 

stresses that the structure can withstand as a result of vibrational accelerations. 

Figure 7 shows the Von Misses stresses that a specific node of the structure would 

experience at different frequencies due to the acceleration. 

 

Figure 7. FRF response in a specific node of the structure. 

Regarding the FRF of the stress response in Figure 7, stress peaks can be seen at 

resonances. Although the maxima of these stresses are always found at 

resonances, the amplitude depends on the damping ratio of the structure [8]. On 

this way, increasing the damping ratio will reduce peaks and vice versa. 

3. Fatigue analysis: 

Once the dynamic behaviour of the battery module is analysed, a random vibration 

input is provided to the model by applying a probability function PDF to obtain an 

approximation of stress levels. While several methodologies exist to model the PDF 

(e.g. Dirlik [81], Steinberg  Narrow Band or Lalanne [82]), the Dirlik PDF is 

suggested for vibrational loads. Connecting the vibrational stress results with 

welded joint’s S-N curve, the damage accumulated in the terminal connection due 

to vibrations can be evaluated. The damage histogram in Figure 8 represents the 

fatigue damage that each stress interval will produce in the component every 

second. 
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Figure 8. Damage histogram 

For the stress analysis in welded joints [83], Hot-Spot [84] or Notch-stress [85] 

methodologies are applicable. The welded joints are modelled as shown in Figure 

9, where the circular path of the welding is simplified as a ring-shape geometry in 

the overlapped section. 

 

Figure 9. Welded joint modelling 

5.3.3 Shock analysis 

The battery module to be tested is subjected to shock forces, often analysed as 

accelerations [76]. While the calculation bases are similar, in the shock analysis 

fracture occurs due to ultimate stress rather than as a result of fatigue. Thus, the 

VM stress result obtained through the structural analysis is then compared with 

the ultimate stress of the welded joint. 

 

Figure 10. Proposed method for shock analysis 
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6. FASTEST cell and module level description and 

models validation 

After reviewing the multiscale high-fidelity modelling paradigm that is available in 

the literature, the specific approach to be followed in the FASTEST project is 

highlighted for physical testing virtualization. First, the cells and module under 

study are described. Second, cell level approach is discussed. Finally, the module 

level approach is assessed. 

In the FASTEST project, two types of battery cells with distinctive characteristics 

will be employed: third-generation cells (3b Generation) and solid-state cells 

(SSB). These cells have been selected to assess and optimize battery technologies 

at various stages of the project, reflecting advancements in battery technology 

and their applicability in real-world contexts. 

Third-Generation Cells (3b Generation): 

• Cell Type: Pouch 

• Cathode: LFP (Lithium Iron Phosphate) 

• Anode: SiC (Silicon Carbide) 

• Electrolyte: Liquid 

• Cell Capacity: 30 Ah 

• Nominal Voltage: 3.2 V 

• Maximum Voltage: 3.65 V 

• Minimum Voltage: 2.2 V 

• C-Rate (Discharge): 0.5C 

• Operating Temperature: 0 to 50 °C 

• Weight: 0.3 to 0.35 Kg 

The third-generation cells offer a balance between safety, capacity, and efficiency. 

The choice of LFP cathode and SiC anode prioritizes thermal stability and longevity, 

crucial aspects for high-reliability applications. 

Solid-State Cells (SSB): 

• Cell Type: Pouch 

• Cathode: LFP 

• Anode: SiC 

• Electrolyte: Solid state (polymer-based) 

• Cell Capacity: 30 Ah 

• Nominal Voltage: 3.2 V 

• Maximum Voltage: 3.65 V 

• Minimum Voltage: 2.2 V 

• Discharge Rate: 0.5C 

• Charge Rate: 0.5C 

• Operating Temperature: 10 to 60 °C 

• Weight: 0.4 Kg 
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SSB cells represent an innovation in battery technology, offering increased safety 

and energy density thanks to their solid-state electrolyte. This feature is 

particularly attractive for applications requiring high energy density and greater 

tolerance to higher temperatures. 

The use of these two cell technologies in the FASTEST project provides a platform 

to evaluate and compare the performance, safety, and feasibility of emerging 

battery technologies in practical applications.  

6.1 Model Validation at cell level 

Non-invasive tests are based on electrical, electrochemical or thermal tests. 

Voltage, current and temperature data are commonly acquired. The equipment 

necessary for these validations generally requires a cycler, a climatic chamber, a 

thermocouple and sometimes a potentiostat. All the works presented in Table 2 

have been taken as a reference to study the tests that are usually used for a P2D 

model validation. The summary of the analysis is presented in Table 2. These tests 

could be divided into three categories: capacity tests (galvanostatic or 

potentiostatic charge discharge cycles at different DoD, current rates and 

temperatures), dynamic tests (pulse tests at different current rates, SoCs, 

temperatures, standard HPPC tests, EIS tests, realistic profiles) and temperature 

validation tests. 

Table 2. P2D model non-invasive validation methods. 
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CCdch (Crate, T) T25 T25 Tr1 T25 Tr2 Tr3 Tr3 T25 

CCcha (Crate, T) - T25 Tr1 T25 Tr2 Tr3 Tr3 T25 

Pulse (Crate, 
SoC, T) 

- - Tr1 - - Tr3 Tr3 - 

EIS (SoC, T) - - - - - - Tr3 - 

Rdrive - - - - - - Tr3 - 

Tsurf - - T25 - Tr2 - Tr3 - 

CCdch: Validation with galvanostatic discharge process at different current rates. 

CCcha: Validation with galvanostatic charge process at different current rates. 
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Pulse: Validation with pulse power charges/discharges at different C-rates and SoCs. 

EIS: Validation with Electrochemical impedance spectroscopy tests at different SoCs. 

Rdrive: Realistic driving profile. 

Tsurf : Validation with cell surface temperature; T25: Temperature control at 25 _C; 

Tr1: Temperature control between 0 and 25 _C; Tr2: Temperature control between 0 to 33 _C; Tr3: 
Temperature control between -10 to 40 _C. 

In Table 2 all authors validate their results against capacity tests. However, only 

some of them validate the dynamic responses of the model [86, 90, 91]. Some of 

the works also present battery surface temperature validation, which corresponds 

to the addition of a fifth PDE (energy balance equation) into the P2D model and its 

validation. Schmalstieg et al. [90] provided the most complete work between the 

analysed research. 

A good experimental-numerical match in those results describes the behaviour of 

cells and model validity at different operating conditions. However, to use those 

models for internal variable control (overvoltage evolution, ageing evolution etc.) 

it is necessary to ensure that the model predictions are in good concordance with 

the experimental evolution. 

6.1.1  Capacity retention 

Capacity retention measurement during battery cycling is the most basic and non-

destructive method commonly used to study averaged battery degradation 

(example shown on Figure 11). Measuring of the remaining capacity is performed 

with low C-rates to avoid high overpotentials, e.g. C/10, in-between the cycling, 

where the cycling C-rates are usually higher in order to accelerate the aging 

process and reduce the measurement time.  

 

Figure 11. Example of capacity retention measurement on LFP/Graphite cells. Source [39]. 
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Loss of cyclable lithium can be ascribed to several processes and can be written in 

a generalised manner 

𝐶𝑙𝑜𝑠𝑠(𝑡0) = 𝐹𝑉 ∫ [𝑎𝑒 ∑ 𝑗𝑖,𝑑𝑒𝑔]𝑑𝑡𝑖
𝑡0

0
, 

where 𝐶𝑙𝑜𝑠𝑠 represents capacity loss at time 𝑡0, 𝐹 represents Faraday constant, 𝑉 

represents volume of the electrochemical cell, 𝑎𝑒 represents averaged specific 

surface of the active material in the electrode and 𝑗𝑖,𝑑𝑒𝑔 represents molar fluxes of 

the side-reactions, e.g. for SEI growth, Li-plating, etc.  

6.1.2   EIS measurements 

Electrochemical impedance spectroscopy (EIS) is a powerful method for non-

invasive monitoring of intra-cell phenomena for characterising electrochemical 

devices such as Li-ion batteries [92, 93]. The main idea of this method is to apply 

a small potential (potentiostatic EIS or PEIS) or a small current (galvanostatic EIS 

or GEIS) excitation to the electrochemical device in the form of a sinusoidal 

perturbation with frequencies ranging across several orders of magnitude [93] 

(typically from kHz to mHz) and measure its response, i.e., amplitude and phase 

shift. The result is an impedance spectrum presented with a Nyquist diagram that 

characterises the phenomena in the battery that occur on the different time scales. 

 

Figure 12. Example of the evolution of the impedance spectra of a Li-ion battery during the 

electrochemical cycling. Source [94]. 

 

Figure 12 demonstrates an example how the impedance spectra of a Li-ion battery 

evolves with increasing number of cycles. Can be easily seen from Figure 12 that 

the overall impedance increases. More precisely, the intersection of the EIS spectra 

with the Re(Z) axis at high frequencies indicates the increase of the internal 

resistance of the battery. Furthermore, the semi-circle that corresponds to the 
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charge transfer resistance and resistance of the passivated film expands quite 

significantly indicating presence of the degradation processes. 

The EIS protocol can be mimicked also virtually with the full electrochemical model 

in time domain by applying sinusoidal current or voltage boundary condition at the 

current collector/electrode interface. In the literature, there aren’t many papers 

that use such approach. R-Smith et al. [94] modelled EIS spectra with the COMSOL 

Multiphysics of the full commercial cell at different levels of degradation and 

extracted several ageing parameters, supported by the advanced microscopy 

techniques. 

It has to be noted that interpretation of the EIS spectra is very challenging since 

there are many intra-cell phenomena occurring at similar timescales and are 

superimposed in the resulting EIS spectra, especially in the case of the full cell 

with two insertion electrodes.  

6.1.3 Advanced post-mortem microscopy 

Advanced microscopy methods such as FIB-SEM or TEM are classified as a 

destructive since cells are disassembled in the process. However, they provide 

valuable insights into the intra-cell state in fresh and degraded state. For example, 

morphology of the electrode, size distribution of the primary and secondary active 

particles, cracks in the particles, particle connectivity, etc. Such microscopy results 

are not directly used for model validation but serve as a model parameterisation 

and guidance in model development. For example, Scipioni et al. [95] performed 

FIB-SEM tomography analysis which revealed that the anode graphite particle size 

is smaller in size in the cycled battery compared to the fresh battery whereas no 

significant change in cathode LFP particle size could be observed. They concluded 

that the decrease in the graphite particle size could be an effect of mechanical 

stress during lithiation/delithiation process [95]. 

6.2 Model validation at module level 

Two different model validations are defined: Thermal analysis part and mechanical 

structural analysis part.  

To validate the results of the thermal model, the results of the electrothermal 

characterization of the battery module will be used. The thermal tests will consist 

of fast and deep charges/discharges; and stationary pulse tests at different C-

ratios, SOC levels and ambient conditions. The reference results will be:  

• The heat absorbed by the fluid (validating the heat generation models and 

heat transfer to the fluid). 

• The temperature distribution in reference cells of the module (validating the 

heat diffusion results in the internal cell layers). 

• The temperatures in the prismatic elements and electrical connections 

(validating the heat transfer in the auxiliary elements). 

To validate mechanical structural analysis part, vibrational fatigue results of welded 

joint, first an experimental modal analysis and, second, vibrational fatigue tests 
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must be carried out [76].While modal tests are used for the validation of the 

resonances and the characterization of the dampi ng ratio, vibrational fatigue tests 

will characterise the dynamic behaviour and durability of welded joints [96]. 

A shaker test bench will provide the vibrational input to welded joints, and the 

dynamic behaviour of welded joints will be characterised by using accelerometers 

attached to test specimens [97]. 
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7. CONCLUSION 

At cell level, different electrochemical models at continuum scale (P2D, SPM, 

SPMe) are presented. Those models could be simplified or reduced to fasten the 

computational time without losing accuracy. We highly recommend the use of 

model order reduction techniques and simplifications to decrease the complexity 

of electrochemical models, enabling real-time implementation while retaining 

physical information. By preserving the parameters of full-order models, significant 

reductions in time and computational load for optimisations in the estimation 

process can be achieved. This will be developed thereafter in the FASTEST project.  

To enhance the electrochemical model, thermal and ageing contributions should 

be added. The cell format is already defined, so it should be carefully check the 

accuracy of the Bernardi equation on 0D and the temperature model at cell level 

when large format of cells is used. This simplified thermal model will be replaced 

with advanced approaches when 3D-thermal battery modules are proposed. The 

physics-based models are claimed to be helpful in order to get the physical insights 

of the battery cells as well as to build enhanced 3D-thermal battery module models 

with cell physics-based model inputs. For thermal cell and module models it is 

critical to assess whether external cooling will be applied or natural convection. 

This is linked to the application of the module and is addressed in other deliverables 

of the project, in which use case specifications are defined. 

The modelling of degradation phenomena in batteries is inherently intertwined with 

performance and thermal models, which provide inputs such as potentials and 

temperature to the degradation models. The main degradation phenomena (e.g. 

growth of the SEI layer, plating of the metallic Li, mechanical stresses, gas 

evolution, etc.) and corresponding modelling approaches for Li-ion batteries with 

LFP cathode and Si/Graphite blended anode were presented. The validation of such 

models is a challenge as advanced post-mortem microscopy is required to gain 

insights into the intra-cell state of fresh and degraded cells, e.g. morphology of 

the electrode, size distribution of primary and secondary active particles, cracks in 

the particles, particle connectivity.  
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