
 
 

 

 

 

EUROPEAN COMMISSION 

HORIZON EUROPE PROGRAMME – TOPIC: HORIZON-CL5-2022-D2-01 

 

 

FASTEST 

Fast-track hybrid testing platform for the development of 

battery systems 

 

 

Deliverable D2.1: Use case specific battery 

testing boundary conditions and DOE 

methods 

 

 

Philipp Brendel 

Organization: FHG 

 

Date: [30.05.2024] 

Doc.Version: [1.0] 

 

 

 

 

Co-funded by the European Union under grant agreement N° 101103755 and by UKRI under grant agreement No. 10078013, 

respectively. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the 

European Union or the European Climate, Infrastructure and Environment Executive Agency (CINEA). Neither the European Union 

nor CINEA can be held responsible for them.  



  D2.1: Use case specific battery testing  

                                    boundary conditions and DOE methods   

Page 2 of 33 

  

Date: 30/05/2024 

Document Control Information 

Settings Value 

Work package: WP2 

Deliverable: 
Use case specific battery testing 
boundary conditions and DOE 
methods 

Deliverable Type: Report 

Dissemination Level: Public 

Due Date: 31.05.2024  

Actual Submission Date: 30.05.2024 

Pages: <33> 

Doc. Version: 1.0 

GA Number: 101103755 

Project Coordinator: 
Alvaro Sanchez │ ABEE  
(alvaro.anquela@abeegroup.com) 

 

 

Formal Reviewers 

Name Organization Date 

Alvaro Sanchez ABEE 05.05.2024 

Ahu Ece Hartavi Karci SURREY 06.05.2024 

 

 

Document History 

Version Date Description Author 

0.1 11.03.2024 First draft version 0.1 Philipp Brendel (FHG) 

0.1 14.03.2024 
Contributing to section 5 

(DOE methods – 5.2.1) 

Laura Oca (MGEP) 

0.1 02.04.2024 

Input to the section 

“Development of model-
based DoE methodology” 

Igor Mele (UL) 

1.0 26.04.2024 
Alignment/Formatting for 

version 1.0 

Philipp Brendel (FHG) 

 

 



  D2.1: Use case specific battery testing  

                                    boundary conditions and DOE methods   

Page 3 of 33 

  

Date: 30/05/2024 

Project Abstract 

Current methods to evaluate Li-ion batteries safety, performance, reliability and 

lifetime represent a remarkable resource consumption for the overall battery R&D 

process. The time or number of tests required, the expensive equipment and a 

generalised trial-error approach are determining factors, together with a lack of 

understanding of the complex multiscale and multi-physics phenomena in the 

battery system. Besides, testing facilities are operated locally, meaning that data 

management is handled directly in the facility, and that experimentation is done 

on one test bench. 

The FASTEST project aims to develop and validate a fast-track testing platform 

able to deliver a strategy based on Design of Experiments (DOE) and robust testing 

results, combining multi-scale and multi-physics virtual and physical testing. This 

will enable an accelerated battery system R&D and more reliable, safer and long-

lasting battery system designs. The project’s prototype of a fast-track hybrid 

testing platform aims for a new holistic and interconnected approach. From a global 

test facility perspective, additional services like smart DoE algorithms, virtualised 

benches, and DT data are incorporated into the daily facility operation to reach a 

new level of efficiency. 

During the project, FASTEST consortium aims to develop up to TRL 6 the platform 

and its components: the optimal DOE strategies according to three different use 

cases (automotive, stationary, and off-road); two different cell chemistries, 3b and 

4 solid-state (oxide polymer electrolyte); the development of a complete set of 

physic-based and datadriven models able to substitute physical characterisation 

experiments; and the overarching Digital Twin architecture managing the 

information flows, and the TRL6 proven and integrated prototype of the hybrid 

testing platform. 
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1. EXECUTIVE SUMMARY 
 

Deliverable D2.1 is a crucial document within the FASTEST project that is 

describing the boundary conditions, success criteria and objectives of the three 

use cases “automotive”, “energy storage systems” and “off-road mobile” and 

identifies and describes their distinct nature when it comes to the experimental 

design of battery tests. 

Furthermore, D2.1 aims at providing an extensive overview over the broad 

scientific landscape that is labeled by the design of experiments (DOE) in order 

to ultimately identify those methodologies that are most promising for 

contributing towards the different workflows within the FASTEST platform. 

The evaluation of both use-case specific boundary conditions and objectives as 

well as existing DOE methodologies highlights that only the combination of use-

case-specific knowledge with novel DOE methodologies can provide a toolbox 

that can ultimately help in reaching the ambitious goals that have been proposed 

for the FASTEST project. 

In conclusion, Deliverable D2.1 provides an extensive overview over both the 

considered use-cases as well as state-of-the-art DOE methodologies, effectively 

paving the way for a fruitful combination of the two elements within novel and 

intelligent DOE methodologies which are specifically tailored to respect the 

distinct nature and boundary conditions for battery testing in each use case. All 

of this is done with a clear goal of minimizing testing time and costs throughout 

the whole development process of battery systems. 
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2. OBJECTIVES 
 

Some of the key objectives of the FASTEST project include a reduction of 

operating time and costs via a hybrid testing platform that utilizes optimized DOE 

methodologies. This goal is closely related to another objective that aims at a 

high overall ratio of fully virtualized test. Both of these aspects can only be 

achieved by virtual models that are properly and trustfully parametrized, which 

emphasizes the need for state-of-the-art models but also a DOE methodology 

that allows state of the art parametrization of such models while being 

specifically tailored towards the different use cases covered within the FASTEST 

project. 

In order to push towards those ambitious goals within FASTEST, D2.1 builds upon 

previous work from WP1, where different use cases as well as their boundary 

conditions, regulations and digitalization potentials have been summarized and 

evaluated. In the context of WP2, D2.1 serves as a first step towards the 

development of battery testing procedures based on intelligent DOE by screening 

and evaluating previous work in the broad landscape of DOE methodologies. This 

is done both for general purposes but also in specific applications for testing and 

the development of LIBs in order to identify application areas and objectives that 

are in line with the aforementioned objectives of the FASTEST project. In close 

collaboration with other work packages such as WP3, the most promising 

methodologies and DOE aspects have been identified and further evaluated with 

respect to the roadmap of the FASTEST project. 

Consequently, the Deliverable concludes with a proposed workflow and some 

preliminary results that may serve as a baseline for the next stages of the 

project where the use-case specific requirements and boundary conditions need 

to be fully integrated into an intelligent DOE-based battery testing procedure that 

is specifically tailored and optimized for each considered use case. 
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3. INTRODUCTION 
 

In the development and evaluation of battery systems, establishing a robust 

methodological framework is crucial. This framework should not only understand 

basic behaviors of these systems but also predict their performance under specific 

use conditions. The FASTEST project’s approach to creating a hybrid testing 

platform aims to achieve this goal by integrating physical tests and virtual 

simulations to optimize the reliability and economy of the battery development 

process. 

 

This document, Deliverable D2.1, details the specific testing conditions for 

batteries and the Design of Experiments (DOE) methods that have been tailored 

for three differentiated use cases: automotive, stationary energy storage, and off-

road mobile devices. Through a combination of physical tests and high-fidelity 

virtual models, this integrated approach seeks to overcome the traditional 

challenges associated with isolated experimentation, such as high time and 

resource demands, and difficulty in simulating varied operational conditions. 

 

The methodological framework proposed in this document is based on 

interdisciplinary collaboration and innovative use of DOE techniques to assess and 

enhance the design and performance of battery systems. The implementation of 

these methodologies in a hybrid testing environment is discussed, highlighting the 

synergy between detailed simulations and rigorous physical testing. This approach 

not only increases the accuracy of test results but also provides a solid foundation 

for decision-making in battery development, ensuring that systems not only meet 

current requirements but are also ahead of future needs. 

 

Additionally, the challenges encountered in integrating these methodologies are 

addressed, and strategies adopted to mitigate them are outlined, ensuring that 

the FASTEST project can provide practical and effective recommendations for the 

battery system industry. With this comprehensive approach, the project seeks not 

only to improve current testing methods but also to establish new standards in 

battery evaluation for a variety of applications. 
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4. BATTERY TESTING BOUNDARY CONDITIONS 
 

The first part of the work description within this Deliverable is focused on the use 

case specific battery testing boundary conditions. Three different use cases were 

selected in order to validate and apply the innovative methodologies developed 

within FASTEST in real application scenarios. In previous work within the 

FASTEST project, testing procedures, regulations and standards were identified 

for the different use-case and evaluated with respect to their virtualization 

potential within the consortium of FASTEST. In order to differentiate between 

tests that are applicable to the considered battery cells regardless of their final 

application scenario and such tests that are indeed use-case specific and require 

tailored DOE approaches, this section is split into two parts. First, a general 

overview on testing procedures applicable to any use case of our considered 

battery cells is presented. 

 

 

4.1 General Testing Boundary Conditions 
 

Standardized test protocols have been developed to establish general boundary 

conditions for Type 3b battery cells. The purpose of these conditions is to ensure 

that all battery cells undergo a uniform set of tests that assess their performance 

and longevity under a range of operating conditions reflective of real-world 

scenarios. This promotes comparability and reproducibility of results between 

different battery systems and helps identify areas for continuous improvement in 

battery design and management. These tests are conducted at temperatures of 

15°C, 25°C, and 45°C to simulate various operating environments. 

Based on the potential tests studied in WP1, a series of tests have been selected 

for both the creation of necessary models in WP3 and WP4, as well as for potential 

physical tests that will be performed on test benches once the hybrid platform is 

finalized and all its components are interconnected. The tests are divided into two 

sections, performance test and safety test. The selected tests are outlined as 

follows. 

It should be noted for the following sections, that all the tests mentioned are 

developed in depth in WP3, this deliverable does not go in depth into each of the 

tests and their procedures. 

Furthermore, although the boundary conditions for the cells of the FASTEST project 

may be defined, the ultimate goal of the project is the creation of a platform that 

can work for different types of cells and modules, therefore these boundary 

conditions will always depend on the specifications of the product to be tested. 
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4.1.1 Performance Tests: 
 

Preconditioning Test: 

This process involves charging battery cells to their maximum specified voltage 

and discharging them to a predetermined state of charge (SOC). The cells 

undergo a stabilization period at specific SOCs to allow for thermal and electrical 

equilibrium, conducted at 15°C. 

Boundary Conditions: 

Voltage Levels: Cells charged to their maximum specified voltage. 

Discharge Level: Cells discharged to a specified percentage of SOC. 

Current Rates: Constant current adapted to the cell's capacity and discharge 

characteristics. 

Temperature: Tests conducted at 15°C, 25°C, and 45°C temperatures to evaluate 

thermal effects. 

Stabilization Period: A rest phase at a specified SOC to allow for thermal and 

electrical stabilization. 

 

Capacity Test: 

Cells are charged to their maximum voltage and then discharged to the 

manufacturer-specified cut-off voltage. The entire test is performed under a 

stable ambient temperature, at 15°C, 25°C, and 45°C, with a constant current 

rate that is adapted to the cell’s specifications. 

Boundary Conditions: 

Voltage Levels: Charging up to the cell's maximum voltage and discharging down 

to the manufacturer-specified cut-off voltage. 

Current Rates: Constant current rate, adapted to the cell’s specifications. 

Temperature: Test conducted at a stable temperature. 

 

OCV Charge Test: 

The open circuit voltage (OCV) profile of the battery is assessed by charging from 

a low specified voltage up to the cell's maximum voltage. The cell rests at 

various SOC levels during the test to measure voltage stabilization, conducted at 

15°C, 25°C, and 45°C. 

Boundary Conditions: 

Voltage Range: From a low specified voltage up to the cell's maximum voltage. 

Rest Periods: Resting the cell at various SOC levels to measure voltage 

stabilization. 
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Temperature: Conducted at standardized temperatures to assess thermal effects. 

 

OCV Discharge Test: 

This test measures the voltage profile as the battery discharges from its 

maximum voltage down to a specified lower voltage limit. Rest periods are 

included at various SOC points to observe voltage changes, carried out at 

standardized temperatures of 15°C, 25°C, and 45°C. 

 

Boundary Conditions: 

Voltage Range: From the cell's maximum voltage down to a specified lower 

voltage limit. 

Rest Periods: Cell rested at various SOC points to observe voltage changes. 

Temperature: Test carried out at standardized temperatures. 

 

HPPC Test: 

This test evaluates the battery’s power capability, especially its ability to handle 

brief high-current loads and recover. It includes short high-current pulses 

alternated with rest or low-current periods, and voltage drops and recovery are 

critically monitored. The HPPC test is performed at 15°C, 25°C, and 45°C. 

 

Boundary Conditions: 

Pulse Current: Short high-current pulses alternated with rest or low-current 

periods. 

Voltage Monitoring: Critical to record voltage drops and recovery after pulses. 

Temperature: Conducted at various standardized temperatures. 

 

Thermal Test: 

The thermal test involves taking measurements at various points within the 

battery cell simultaneously, specifically targeting six different points to 

understand its thermal behavior comprehensively. This method assesses the 

battery's performance under various environmental conditions. The test controls 

the heating and cooling rate to prevent thermal shock while monitoring key 

performance indicators such as capacity, voltage, and internal resistance at each 

measurement point. These generic boundary conditions provide the flexibility to 

adapt the test to specific cell specifications, ensuring precise and relevant data 

collection and analysis for various battery types. 

Generic Boundary Conditions: 

Temperature Range: Tests conducted through a defined range of temperatures. 
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Heating/Cooling Rate: Controlled to avoid thermal shock. 

Measurement: Monitoring performance in terms of capacity, voltage, and internal 

resistance at each temperature. 

These generic boundary conditions allow flexibility and can be tailored to specific 

cell specifications when conducting tests, ensuring accurate and relevant data 

collection and analysis for a variety of battery types. 

 

4.1.2 Safety Tests: 
 

Safety tests are designed to evaluate the robustness and safety features of 

battery cells under extreme or faulty conditions. These tests are crucial for 

ensuring the reliability and safety of batteries in various applications. The tests 

include scenarios such as overcharge, forced discharge, internal and external 

short circuits, continuous charging, extreme heat exposure, thermal cycling, 

cooling system failures, moisture resistance, internal fires, high-rate charging, 

and working voltage measurements. 

 

Cell level 

Overcharge Test: 

This test involves charging a battery beyond its maximum rated voltage to 

assess the safety mechanisms and robustness under conditions that might occur 

during abnormal charging scenarios. The objective is to ensure that the battery 

can safely handle excessive voltages without catastrophic failure, such as 

thermal runaway or cell rupture. 

 

Forced Discharge Test: 

The forced discharge test subjects the battery to discharging at rates higher than 

the manufacturer's specifications to evaluate the battery's ability to safely 

dissipate energy. The goal is to confirm that the battery maintains structural and 

chemical integrity when subjected to stress beyond its normal operational 

capacity. 

 

Internal Short Circuit Test: 

This test simulates an internal short circuit within the battery to examine how 

well the battery can contain and control the heat and potential ignition that 

might result from such a fault. It assesses the effectiveness of the battery's 

internal design and safety features in preventing a fire or explosion. 
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External Short Circuit Test: 

In this test, an external short circuit is deliberately created to observe the 

battery’s response. The aim is to test the external safety measures and circuit 

protection to ensure they react appropriately to prevent damage and ensure user 

safety. 

 

Continuous Charge Test: 

This test involves continuously charging the battery without a typical cut-off to 

see how the battery handles overcharging scenarios. It evaluates the 

effectiveness of the battery management system in preventing overcharging and 

maintaining safety. 

 

Working Voltage Measurement Test: 

This test measures the operating voltage range of the battery under normal use 

conditions to establish baseline performance metrics. The goal is to ensure the 

battery operates safely and effectively within the designated voltage parameters. 

 

Extreme Heat Test: 

The extreme heat test exposes the battery to abnormally high temperatures to 

evaluate its thermal management systems and material integrity under heat 

stress. It’s crucial for verifying that the battery can operate safely in hot climates 

or during intense operational heat. 

 

Thermal Cycling Test: 

This test involves repeatedly cycling the battery between two extreme 

temperatures to assess how temperature fluctuations affect the battery’s 

performance and lifespan. The objective is to ensure the battery can withstand 

varied thermal environments without degradation. 

 

Module level 

Failure of Cooling System Test: 

This test assesses the battery's behavior in the event of a cooling system failure. 

It helps in understanding the battery's intrinsic safety measures to dissipate heat 

and prevent thermal runaway when external cooling fails. 

 

Moisture Resistance Test: 

The moisture resistance test exposes the battery to high humidity or direct 

contact with water to evaluate its seals and coatings. The goal is to ensure the 

battery remains safe and functional even when exposed to moisture. 
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Internal Fire Test: 

This test investigates the battery’s ability to contain and manage a fire within its 

cells or modules. It is crucial for assessing the risk mitigation strategies 

embedded within the battery design to protect against internal fires. 

 

High-Rate Charge Test: 

This test subjects the battery to charging at a higher current rate than usual to 

determine how quickly the battery can be charged safely. It assesses the rapid 

charging capabilities and the thermal and voltage responses of the battery under 

such conditions. 

 

Working Voltage Measurement Test: 

Similar to the earlier test, this involves measuring the voltage output during 

operational conditions to verify that the battery operates within safe and efficient 

voltage ranges under different loads. 

 

Generic Boundary Conditions: 

Voltage Levels: Testing includes pushing the voltage beyond the cell’s normal 

operating range to simulate overcharge and extreme conditions. 

Current Rates: Applying currents that exceed the usual operational levels to 

assess the cell's response to overcharge and high-rate charge scenarios. 

Temperature: Tests are conducted at multiple temperatures to simulate different 

environmental conditions and assess the battery’s thermal management and 

response to extreme heat and thermal cycling. 

Environmental Stress: Exposure to moisture and controlled environmental 

failures to test the battery’s resistance to humidity and its cooling capabilities 

under duress. 

Each test is tailored to trigger specific safety mechanisms within the battery, 

ensuring that all potential failure modes are adequately assessed. The use of 

standardized temperatures helps in evaluating the cell's performance and safety 

under varying thermal conditions, crucial for applications across different 

climates. 

 

In the following, we describe the use-case specific battery testing boundary 

conditions identified for the three use cases in more detail. 
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4.2 Use-Case Specific Boundary Conditions  
 

In this section, we address the specific test conditions for the three use cases 

considered in the FASTEST project. These conditions are designed to reflect the 

operational environments and unique challenges associated with each application, 

thereby allowing for more accurate and relevant testing and evaluations. 

Therefore, in addition to the standard tests described in Section 4.1, we have 

designed a series of aging tests specific to each of the three identified use cases: 

electric vehicles, stationary energy storage systems, and off-road mobile devices. 

These tests are intended to simulate the charging and discharging profiles that the 

batteries would experience in their specific applications, thus providing a more 

accurate assessment of their durability and behavior under prolonged usage 

conditions. 

4.2.1 Automotive 
 

Recognizing the importance of evaluating battery durability and performance under 

realistic conditions, the implementation of the Worldwide Harmonized Light 

Vehicles Test Procedure (WLTP) is employed as the foundation for aging tests in 

electric vehicles. This contemporary standard reflects daily vehicle use more 

accurately and incorporates a broader spectrum of operational conditions. 

 

Aging tests under the WLTP cycle are designed with the following specific boundary 

conditions: 

• Speed Profiles: These include low speeds in urban areas and higher speeds 

typical of highways, simulating a variety of driving scenarios. 

 

• Ambient Temperature: The tests are conducted over a range of 

temperatures, simulating various climatic conditions a vehicle might 

encounter during operation. 

 

• Use of Auxiliary Systems: The impact of systems such as air conditioning 

and lighting is considered, which can significantly affect the battery's energy 

demand. 

 

• Charge and Discharge Cycles: The cycles implemented reflect overnight 

charging and rapid recharging during the day, typical of an electric vehicle 

user's routine. 

 



  D2.1: Use case specific battery testing  

                                    boundary conditions and DOE methods   

Page 16 of 33 

  

Date: 30/05/2024 

Figure 1. WLTP profile. 

• Test Duration: Batteries are subjected to repeated WLTP cycles until a 

specific percentage of degradation of the original capacity is reached, 

allowing for the assessment of lifespan under continuous use. 

 

 

The End of Life (EOL) criterion is a crucial factor to consider when discussing the 

aging of batteries. For batteries in the context of WLTP testing is generally marked 

when the battery's capacity degrades to 70-80% of its original capacity. This 

criterion, while not specifically defined by the WLTP, is widely accepted in the 

electric vehicle industry. It reflects significant reductions in battery performance, 

notably in its ability to store and deliver energy, which directly impacts vehicle 

range and usability. EOL assessment involves repeated deep discharge and charge 

cycles to measure when the battery no longer meets these performance 

thresholds. 

By using WLTP in aging tests for electric vehicles, it is ensured that the batteries 

are evaluated and optimized to perform efficiently across the full spectrum of 

driving conditions that end-users will experience. This approach not only enhances 

the relevance of the tests but also boosts consumer and manufacturer confidence 

in electric vehicle technology, promoting its adoption and acceptance in the global 

market. 

The automotive use case considers a system based on 400V and 60kWh capacity 

with modules of 48-60 V, 100-270 A, connected in series. Its main objectives are 

to improve the battery systems design with respect to time and cost by utilizing 

the hybrid testing approach developed in FASTEST. 
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4.2.2 Stationary energy storage 
 

For the stationary energy storage use case, no standardized test protocol like the 

WLTP for vehicles exists that specifically applies to the operational patterns of 

stationary storage systems. Consequently, to ensure the aging tests for this use 

case are conducted under realistic and scientifically rigorous conditions, a 

normalized current profile derived from reliable sources will be used. This approach 

allows for a consistent evaluation of battery performance and durability across 

various systems and conditions. 

• Current Profile: The test utilizes a current profile that is normalized based 

on industry benchmarks and reliable data sources. This profile includes typical 

charge and discharge cycles that stationary storage systems would experience 

during regular operation. 

• Temperature Variability: Tests are conducted under a variety of thermal 

conditions to simulate different environmental impacts on the storage system. 

Understanding how temperature influences battery efficiency and degradation over 

time is crucial for these systems. 

• Continuous and Intermittent Cycling: Reflecting real-world usage of 

stationary storage, the profile includes long-duration discharges followed by full 

recharges, as well as intermittent, partial charge and discharge cycles to mimic 

demand-response scenarios. 

• Test Duration: The automotive use case where a strict 70-80% capacity 

degradation criterion is used to determine EOL, the test duration for stationary 

storage systems is less stringent. Batteries are cycled until they show significant 

degradation, but not necessarily confined to the 70-80% range. This flexibility 

acknowledges the different operational stresses and longevity expectations specific 

to stationary applications. 

 

By implementing normalized current profiles from reliable sources, the aging tests 

for stationary energy storage systems ensure consistent and replicable testing 

conditions that closely align with real-world demands placed on these systems. 

This strategy enhances the tests' relevance, providing stakeholders with 

confidence in the performance and longevity of these systems, ultimately 

supporting their broader adoption and integration into energy networks. The less 

stringent EOL criterion reflects the unique requirements and usage patterns of 

stationary storage systems, allowing for a more tailored approach to evaluating 

their performance and durability. 

The stationary energy storage use case considers systems built from modules of 

48–60V, 30-40 A and 5-10 kWh capacity, which are connected in series and 

parallel. As applications of such systems and therefore customer requirements may 

vary a lot, this use case aims for a high versatility and range of boundary conditions 

during battery testing and to improve the battery system design thanks to the 

hybrid testing approach. 
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4.2.3 Off-road mobile devices 
 

Similar to the stationary energy storage use case, there is no standardized cycling 

protocol for off-road mobile devices. However, one of the main differences to the 

energy storage use case is the high scenario predictability with regularly 

alternating charging and discharging cycles with little dynamics and deviations. 

This allows to incorporate utilization data for within the aging testing of a given 

scenario. Within the FASTEST project, typical scenarios feature devices like Laser-

Guided Vehicles (LGVs) and Automated Guided Vehicles (AGVs). The considered 

boundary conditions include: 

• Current Profile: Normalized Current Profiles with alternating constant-

current charge and discharge cycles. The working cycles remain in a narrow SOC 

window from 70% to 80%. 

• Temperature Variability: Due to the high scenario-predictability and small 

considered SOC ranges, comparably small temperature variations are considered 

from around 25°C to 35°C. 

• Test Duration: The EOL criteria are based on standard IEC 62620:2014 and 

include a remaining capacity of 60% compared to the rated capacity after 500 

cycles as well as an internal resistance below two times the initial resistance after 

2000 cycles. 

 

 

Figure 2. Exemplary Load Profile for large off-road mobile device. 

This offroad/industrial use case considers systems based on 51.2V and 21.5-

30.7kWh capacity with modules of 3.2-6.4V and 400-560A which are connected in 

series and parallel. Our main objectives are to create a customized testing protocol 

that leverages the insights from the battery usage dataset and optimize the battery 

systems testing with consider to time and cost. Figure 2 shows an exemplary 

current profile for an exemplary off-road mobile device. 
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5. DOE METHODOLOGIES 
 

Design of Experiments (DOE) is a powerful tool in scientific research to analyze 

the relationship between factors (input) and responses (output) of a system. This 

approach is helpful to reduce time and effort of the experiments and to combine 

them with modelling. In the following, the general DOE methodology and some 

of its most important associated terms are introduced. Subsequently, the usage 

of DOE for different aspects related to Lithium-ion batteries (LIBs) is reviewed to 

provide a broad picture of different aspects and possible application scenarios of 

DOE. Finally, this Section concludes with an in-depth explanation of a potential 

DOE workflow that is tailored towards the scope of the FASTEST project. 

5.1 Introduction to DOE 
  

In general, any DOE methodology consists of a set of sequential steps which may 

be partially repeated based on intermediate conclusions about the problem at 

hand. After an initial definition of a problem statement, the relevant response 

variables as well as their influencing factors and levels (i.e. the considered 

parameter space) need to be defined. For the experimental design one may 

choose from a wide range of options including designs used to obtain a general 

understanding of the factor-response correlations, usually considering a limited 

set of factors and levels (“screening” or “factorial” designs). More elaborate 

approaches include the so-called response surface methodology (RSM) which 

corresponds to a contour plot in k+1 dimensions for a selected set of k factors 

(e.g. identified from a previous screening design). Different types of RSM designs 

exist, with the central composite design (CCD) being one of the most popular 

ones consisting of a factorial design with additional axial and centre runs, cf. e.g., 

[1]. Some further types and derivations of the aforementioned designs are 

excluded here for the sake of brevity. 

Apart from classical designs, many designs exist under the general terminology 

of “optimal designs” which usually refers to designs that are optimal with respect 

to certain criteria related to information matrices and regression coefficients. In 

this context, the so-called Fisher-based optimal experimental designs, which are 

based on the Fisher-Information-Matrix (FIM), play an important role for the 

remainder of this Deliverable and will therefore be explained in more detail in 

Section 5.3.2. Table 1 provides a non-exhaustive overview over some of the 

aforementioned experimental designs. 

After factors, responses and a specific design have been selected in the initial 

planning stage of the DOE workflow, experimental runs are executed, often 

yielding preliminary conclusions that can be re-integrated into the experimental 

design or the selection of factors and response for further considerations. In this 

sense, DOE is not necessarily a purely sequential procedure but should be viewed 

as an iterative process with the overall goal of fine-tuning the experimental 

design towards a specific objective. 
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Design Description # experiments 

Screening k factors with 2 levels each N = 2^k 

Factorial k factors with L levels each N = L^k 

Response surface 

methodology 

Contour plot in k+1 

dimensions 

N = k^2 + 2k + c 

(CCD) 

Fisher-based 

optimal designs  

designs that optimize the 

Fisher-Information-Matrix 
with respect to certain 
metrics (trace, determinant, 

etc.)  

Non-deterministic, 

problem-dependent  

Table 1: Overview on Experimental Designs. 

Finally, another important DOE element is the statistical analysis of the 

experimental runs and the resulting models from which certain conclusions are to 

be drawn. Statistical concepts like P-value or F-value criteria can be used to back 

up conclusions with a solid theoretical basis by quantifying the statistical 

significance of the observed outcomes and conclusions. 

 

Figure 3. Steps in the DOE methodology. Source: [2] 

Figure 3 depicts these steps within the aforementioned workflow, but it should be 

emphasized that the actual realization of such a methodology heavily depends on 

the type of problem as well as the targeted kinds of conclusions and objectives.  
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5.2 DOE for LIBs 
 

In the context of LIBs, DOE methodologies have already been used to study 

many different subjects, that would go beyond the scope of this Deliverable in all 

their details. Therefore, this Deliverable only provides a condensed overview on 

the most relevant ones with respect to the FASTEST project in the following 

subsections. 

5.2.1 Battery ageing 
Studies related to battery ageing differentiate between calendar ageing which is 

related to the SEI build-up and cycling ageing, which is affected by SEI growth, 

lithium plating, volume changes and degradation effects in the electrodes. 

Electric current, temperature, and State of charge (SOC) and related quantities 

are usually considered as factors for the DOE in cycling aging, cf. [3]. The 

responses are defined by capacity and power fade. Most studies identify 

temperature and SOC as the main factors for capacity fading. In previous work 

focused on a D-optimal design, both calendar and cycling degradation modes 

could be combined into an empirical ageing model [4]. 

5.2.2 Energy Capacity 
Few studies also investigated the relation of physical factors like particle sizes, 

electrode thickness, volume fraction of the active material and C-rate as factors 

on the specific energy and specific power as responses of interest. In previous 

work using a graphite / LFP chemistry, optimal power conditions are achieved if 

electrode thickness is less than 30 μm and the C-rate is equal to 5C. For optimal 

energy, particle size should be less than 40 nm, electrode thickness between 75 

and 100 μm, and the volume fraction of the active material should range from 

0.4 to 0.6 [5]. 

5.2.3 Formulation 
DOE studies related to formulation consider different mixtures of components for 

electrolyte and electrodes and responses like discharge capacities, capacity 

retention and other cell performance indicators such as thermal conductivity. 

While most studies focus on the cathode chemistries and their optimal 

component mixture, several different designs have been used to arrive at such 

conclusions. For example, Rynne at al. [6] have studied the formulation with 

respect to active material, conductive additives, and polymer binder via d- and I-

optimal designs. 

5.2.4 Thermal Design 
Thermal design studies aim at optimizing the temperature rise or related 

response quantities like total energy release or temperature of cooling plates. For 

that purpose, factors like mass of phase change material, thermal conductivity of 

paraffin copper composite and the rate of water flow are considered. A previous 

analysis concluded that all of the aforementioned factors have a significant 

influence on temperature rise while the most important one is the mass of phase 

changing material [7]. 
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5.2.5 Model Parametrization 
Due to the high need for fast and reliable parametrization of several for several 

types of models in the context of LIBs, DOE methodologies have also been used 

for parameter estimation and identification. For this purpose, different types and 

amounts of parameters have been studied in order to find optimal designs for 

parameter estimation usually based on a voltage response. A common approach 

is to investigate fisher-based optimality criteria in order to maximize the 

identifiability of parameters and reduce the time required for parametrization, cf. 

[8], [9].  

As the FASTEST project aims at a time and cost reduction during testing using a 

hybrid testing platform and a high ratio of virtualized test, it was determined 

collaboratively, e.g. with partners from WP3: “Advanced battery aging and 

performance modelling”, that these goals can be supported by a model-based 

DoE that aims at fast and reliable model parametrization. Therefore, the 

following subsection focuses on DOE methodologies as described above in 

Section 5.2.5. 

 

 

5.3 DOE within FASTEST 
 

After many iterations of presenting, discussing and evaluating different ideas, the 

FASTEST team was able to gather several ideas and directions regarding DOE 

methodologies, that are specifically tailored for the projects KPIs, while still 

leaving enough room and flexibility for future adjustments that may be needed. 

One of the main challenges of the FASTEST projects will be to tailor and optimize 

the resulting workflow for the wide range of different use-case that are covered 

within the project as described in Section 4. Additionally, a novel methodology 

based on Machine Learning is introduced that provides potential to speed up this 

workflow tremendously in several aspects and therefore pushing it further 

beyond the state of the art in the upcoming stages of the project. 

As described before, the focus herein remains on DOE methodologies aiming at a 

fast and reliable model parametrization for efficient virtualization of tests. The 

reader is referred to previous work, e.g. in Deliverable D3.1 “Multiscale high 

fidelity modelling paradigm for physical testing virtualization”, for an in-depth 

perspective on the different modelling approaches within FASTEST as well as the 

high need for a reliable parametrization of these models. Figure 4 outlines the 

different contributions that the proposed DOE methodologies can provide in this 

procedure. 
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Figure 4. Proposed DOE workflow for parameter estimation and ID profile optimization. 

In the following parts of this Deliverable, an in-depth explanation of the different 

DOE elements highlighted in Figure 4 is presented. 

 

5.3.1 Development of model-based DOE methodology for assessing 

uniqueness of parameter identification 
 

Electrochemical model of the battery cell (Newman inspired [10] pseudo 2D model 

[11], see Figure 5) inherently consists of number of physically based parameters 

that need to be determined during the parametrization procedure. These 

parameters range from geometry and structure properties of the cell (electrode 

and separator), morphology of the electrode material (e.g., particle size 

distribution), transport, electrical, thermal properties of electrolyte and electrode 

material.  

 

Figure 5. Schematic representation of electrochemical model domain for the 3b generation battery 

used in the first stage of the FASTEST project. 

After the parametrization procedure is completed and model is validated against 

the experimental results, the question arises how uniquely a certain parameter is 

defined and how does the measurement settings and measuring protocol impact 

the uniqueness of parameter identification. To answer this question, the Fisher 

information approach was employed. 

Fisher information is the centerpiece of all analyses performed. It indicates how 

much information an observable random variable, or in the case of a data set, a 

data point, carries about an unknown parameter vector θ. This can also be used in 

other ways: If we know the FIM, we can determine which unknown parameters in 

the parameter vector θ cannot be uniquely determined with the data set at hand 

[12]. In the analysed case, the unknown parameter vector θ represents the vector 

of the calibration. Mathematically, we can write down the definition of the FIM for 

the calibration parameters with Gaussian errors as follows: 
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𝐹𝐼𝑀(𝑈, 𝜃) =
𝜕𝑓(𝑈, 𝜃)⊤

𝜕𝜃

𝜕𝑓(𝑈, 𝜃)

𝜕𝜃
 

Where 𝑈 is the observed outcome of the model at hand, 𝜃 is the aforementioned 

vector of calibration parameters and 𝑓 is the function of the model. 

Each individual element in this matrix carries different information about the 

parameters and their interdependence (see Figure 6). Diagonal elements represent 

the certainty of the determination of the calibration parameter, i.e., the inverse of 

the error in calibration parameter value, therefore a higher value here means a 

lower error.  

 

Figure 6. Schematic representation of the meaning of the diagonal and non-diagonal elements of 
the FIM matrix (left) and illustrative example of FIM matrix with 9 parameters (right). 

 

On the other hand, the non-diagonal elements represent the correlation between 

the individual parameters. High values here mean that there is a high probability 

that the two parameters are barely separated from each other, that they are 

strongly interdependent and therefore cannot be well defined separately. However, 

in the case that the diagonal values are not high for all calibration parameters, this 

could also mean that this is only an effect of the higher diagonal value of the 

parameter with which the mixed partial derivative of the second order is formed. 

This can also be explained with an n-dimensional space parabola, where n is the 

number of calibration parameters. The FIM actually represents the derivative of 

the curvature of the n-dimensional surface. This means that if there is a significant 

gradient in the direction of one calibration parameter, there is a high probability 

that this will affect the gradients in the neighbouring directions if the n-dimensional 

curve is continuous and twice continuously differentiable. Therefore, these non-

diagonal elements only indicate the independence or interdependence of the 

parameters. 

This is confirmed or refuted by the FIM decomposition. Mathematically, the 

decomposition stands for the kernel calculation. Even without looking at the kernel 

itself, one can already tell a lot about the unique determination of the calibration 

parameters by simply looking at a rank of the kernel. As a general rule of thumb, 

the higher the rank, the more pronounced the inter-correlation between the 

parameters. However, a kernel with a low rank is a necessary but not sufficient 

condition to obtain an optimal quality of fit for a given set of experimental data 

while uniquely determining all calibration parameters. Theoretically, one could 

obtain the kernel of the FIM with rank zero, but the quality of fit would be poor, 

e.g. due to the modelling basis not being detailed enough or due to the fact that 

the optimisation gets stuck in a local instead of a global minimum. On the other 
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hand, the kernel of the FIM could be obtained with a high rank, but the parameters 

would be almost uniquely determined and the intercorrelation between the 

parameters would be small but not zero, e.g. due to a non-Gaussian measurement 

error, measurement uncertainties or due to the suboptimal parameterisation of the 

model. 

Besides the kernel, several so-called optimalities can be extracted from the 

calculated FIM. These optimality criteria bring additional information that can 

further maximise the efficiency of data collection in scientific experiments. Each 

optimality criterion reflects different aspects of the precision and efficiency of 

parameter estimation. The choice of optimality criterion depends on the specific 

goals and constraints of the experiment. The following optimalities were 

implemented to further support the FASTEST project’s goals, namely: 

• D-optimality, which is calculated from the determinant of the FIM, 

• E-optimality, which is calculated from the minimal value of the eigen values 

of the FIM, 

• T-optimality, which is calculated from the trace of the FIM. 

Therefore, the experiment is for example D-optimal if the value of the D-optimality 

is minimized.  

To conclude, with the aim of obtaining the best possible quality of fit and 

repeatability of the calibration process, the optimisation procedure should satisfy 

modelling constraints, while experimental data should provide enough information 

about the calibration parameters to enable unique the parametrisation of the 

model. Even though the latter is highly dependent on the modelling basis, a well-

defined design of experiments could provide (if physical constraints do not prevent 

such type of excitation) a data set containing sufficient information about all 

calibration parameters of the model. 

 

Preliminary results of the implemented methodology: 

The proposed model-based DOE methodology for assessing uniqueness of 

parameter identification was implemented as a supporting library in the C-

programming language. Calculation of the derivatives needed for calculation of the 

FIM was performed with the higher-order numerical derivation scheme to obtain 

accurate results. Besides the main result, i.e. FIM, the library also calculates 

various optimalities as mentioned above. To test the methodology, the developed 

FIM library was applied to the existing electrochemical model, which was set-up as 

a half-cell model and parametrized with thin NMC811 electrode since the 

measurements and parametrization of the FASTEST batteries were not yet 

available at the time of running these simulations.  
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Figure 7. Preliminary results of the FIM analysis applied to the electrochemical model. Discharge 
curves of the thin NMC811 electrode (left), four FIM matrices corresponding to different C-rates 

(right). 

Figure 7 shows the preliminary results of the FIM analysis applied to the half-cell 

electrochemical model with NMC811 as an active cathode material and Li-foil as a 

counter electrode. The FIM analysis was performed on the case of different 

discharge profiles at different C-rates, including C/10, 1C, 2C and 5C, shown on 

the left side of Figure 7. Four FIMs were calculated (shown on the right part of the 

Figure 7) for each C-rate. There are 12 electrochemical model parameters that 

were included in the analysis, namely the exchange current densities, double layer 

capacity, solid-phase diffusion constant, active particle size, Bruggeman 

coefficient, transference number, conductivity of the electrolyte, porosities of the 

cathode and separator and volume fraction of fillers in the cathode. Individual 

elements in the FIM are represented with a coloured square. The colour indicates 

the value of FIM element after applying log10 and absolute value to the calculated 

FIM, i.e. Log10(abs(FIM)), to better represent values due to several orders of 

magnitude difference between individual elements of the FIM (see colour bars in 

Figure 7). 

A general observation of the FIMs in the Figure 7 reveals that values of the diagonal 

element feature relatively high values compared to the majority of the non-

diagonal elements. The certainty of the determination of the calibration parameter 

and correlation between certain parameters increases with higher currents 

(shifting towards warmer colors in the colourbar). Furthermore, the porosity and 

volume fraction of the fillers in the cathode are the parameters with the highest 

certainty of determination. With increasing current, also the correlation between 

the two mentioned parameters and others, e.g. exchange current densities and 

particle size starts to increase. Low correlation, for example, can be identified 

between transference number and particle size, and between exchange current 
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density at the particle/s surface and Bruggeman’s coefficient. In the continuation 

of the FASTEST project, more detailed analyses will be performed.  

 

5.3.2 Model-based DOE methodology for parameter estimation with 

reduced-order-models at cell level 
 In this section, the model-based DOE methodology for parameter estimation with 

reduced-order-models at cell level is explained. The main objective of this task is 

to present a workflow to accurately fit a certain number of model parameters which 

cannot be provided directly experimentally. This work is directly linked to WP3 of 

the project (advanced battery ageing and performance modelling), as the reduced-

order-model at cell level is being developed there. The available physical 

performance and ageing testing have been defined in WP1 (specifications, 

requirements and use cases definition) according to the available testing standards 

of the literature for automotive, industrial and stationary applications. The test 

procedures are executed inside WP3 and are an input of this model-based DOE 

methodology (the profiles to be used). The profiles that can be used for parameter 

estimation (physically tested) are the followings at cell level: performance testing 

(capacity tests, pulse tests, qOCV tests, galvanostatic cycles at different current 

rates, thermal tests and use case application tests) and ageing testing (cycling and 

calendar). The methodology is presented in Figure 8. 

 

 

Figure 8. Model-based DOE methodology for parameter estimation with ROM at cell level. 

 The first step of this task is to define which parameters are provided 

experimentally and which of them need an optimization sequence to estimate 

them. This evaluation has already been done in T3.1 of the project, for which the 

partners involved in the modelling have requested to ABEE (the cell manufacturer) 

the parameter set to be defined. Based on that information, the parameters to be 

estimated are decided. The FIM analysis provides information on how uniquely the 

calibrated parameters are defined. Additionally, it provides a measure that can 

potentially define the optimal ID profile. After, the Reduced-Order-Model (ROM) is 

used in combination with an optimization algorithm to find the model parameters 
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that minimize the difference between the simulated and experimental response of 

a measurable variable. Most commonly, this problem involves minimising the non-

linear least square regression function, as expressed in equation 1: 

𝐹(𝜃) = 𝑚𝑖𝑛
𝜃

∑ (𝑦𝑚(𝑡𝑖) − 𝑦(𝑡𝑖, 𝜃))
2𝑁

𝑖=1                (1)  

where 𝑦𝑚(𝑡𝑖) is the measured variable and 𝑦(𝑡𝑖, 𝜃) is the model prediction with the 

parameter vector guess, θ. The optimisation algorithm stops when the difference 

reaches a minimum fitness value set by the user, which means an acceptable error 

of the model predictions. 

 

5.3.3 ID profile optimization 
Figure 9 schematically represents the potential methodology for optimizing input 

driving (ID) profile with the aim of maximizing the certainty of the determination 

of the calibration parameters with the aim of reducing experimental time for testing 

after parametrization is done, and therefore reducing also the costs. 

 

Figure 9. Proposed methodology for optimisation of the virtual measuring protocol. 

The purple rectangle on the Figure 9 denotes the basis for the proposed 

methodology and includes Input, battery model, FIM analysis algorithm and 

calculation of Optimality. In the field of experimental battery characterization or 

battery modelling, the most common input would be the time-dependent current 

profile. For example, in Figure 7, a constant current over time was chosen for the 

analysis, however there are numerous current versus time profiles that are widely 

used in the field, e.g. simple cycling with (dis)charge currents, hybrid power pulse 

characterization (HPPC) or WLTP driving cycle, and many others. The challenge is 

in choosing the optimal profiles that provide the most information of the studied 

system, e.g. battery, and in the same time reduce the time needed to perform the 

experimental characterization. 

The current profile is then applied to an already parametrized battery model, which 

as a result returns the time dependent voltage response (among other possible 

outputs of the model, e.g. state of charge, power, power loss, etc.). Then the FIM 
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analysis is performed. Input current profile stays the same (refer to the Figure 7), 

only the selected model parameters are being perturbed. Selection of the 

parameters depends on the use case. Perturbation of the selected parameters 

affects the model output which is then fed into the Fisher information analysis 

library, which calculates the FIM. Examples of FIMs can be seen in Figure 7. 

For the introduction of the optimization algorithm into the methodology, some sort 

of scalar value has to be extracted or calculated from the FIM which is NxN 

dimensional, where N is number of parameters in investigation, since it would not 

be feasible to optimize the entire FIM. These scalar values are called optimalities 

and are explained in the previous section and will serve as a measure for the 

optimisation algorithm.  

Now that the basis (starting with input to the model and ending with an optimality 

value) denoted by the purple rectangle on the Figure 9 is established, the 

optimization algorithm can be applied on the basis. First, the decision has to be 

made on the optimality on which the design of experiment will be optimized. This 

again depends on the use case. The main task of the optimization algorithm is to 

take the value of selected optimality and provide a better set of calibration 

parameters that are responsible for selecting or generating new proposal for the 

ID profile, e.g. time dependent current profile. This is denoted by the “ID profile 

selector/generator” in Figure 9. The new ID profile is then selected/generated and 

fed back into the battery model as a new Input. The end result should be an ID 

profile that is optimal in terms of achieving optimal DoE and is defined with the 

parameters that select or generate the ID profile obtained by the optimization 

algorithm.  

 

5.3.4 DOE methodologies based on Physics-Informed Neural 

Networks 
As part of the screening process conducted in Task T2.1 of the FASTEST project, 

Physics-Informed Neural Networks (PINNs) were identified as promising and 

emerging option for pushing the aforementioned DOE methodologies beyond the 

state-of-the-art and further optimize and reduce experimental costs during 

battery testing. 

PINNs represent a rather new form of machine learning, cf. [13], that combine 

neural networks with the principles of physics for solving partial differential 

equations (PDEs) and related continuum problems. These networks are trained to 

learn the underlying physics of a system by approximating and minimizing the 

corresponding residuals of differential equations, initial and boundary conditions 

instead of relying solely on large amounts of data to minimize the differences 

between the networks output and corresponding data. PINNs have been 

successfully applied to a wide range of problems in fluid dynamics, heat transfer, 

structural mechanics, and other fields where PDEs govern the behavior of 

physical systems. By integrating domain knowledge and constraints into the 

neural network architecture, PINNs can effectively capture complex nonlinear 

phenomena and can also be combined with noisy or sparse data. 
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After training in a generalized fashion over certain parameter ranges PINNs can 

be used for inference of simulation results in a matter of milliseconds. In a 

related approach, usually referred to as Operator Learning, such networks can be 

extended to generalize over discrete functional inputs - e.g., representing 

temporally or spatially varying boundary conditions – in order to learn a mapping 

between function spaces, i.e. an operator. This setup can also be trained in a 

physics-informed manner, explaining the notion of Physics-Informed Deep 

Operator Networks (PI-DeepONets) [14]. Due to their relatively small 

requirements regarding software and hardware environment, such networks are 

also feasible candidates for deployment on edge computing devices, e.g., in the 

context of a battery management system (BMS). 

In the scope of the FASTEST project, classical PINNs or PI-DeepONets have been 

identified as potential surrogate models for the different types of models which 

are explained more thoroughly in previous work (cf. Deliverable D3.1). By 

generalizing over different (unknown) parameters or current profiles, they are of 

specific interest for the DOE methodologies developed in the FASTEST project. 

Figure 10 shows an exemplary architecture of a PI-DeepONet, which is trained to 

predict the Lithium concentration within a LIB-cell based on the governing 

equations of the Single-Particle-Model (SPM). 

 

Figure 10. PI-DeepONet for Prediction of SPM solutions (𝑐𝑛(𝑟, 𝑡) and 𝑐𝑝(𝑟, 𝑡)) for different current 

profiles and diffusivities. 

By training this network over a (pre-defined or randomized) set of current 

profiles (cf. “Branch” input in Figure 10), and a continuous parameter space 

(indicated for anode and cathode diffusivities in the “Trunk” input of Figure 10), 

this surrogate model can be used for parameter estimation in the same manner 

as indicated in Section 5.3.2. 

Furthermore, after parameters are identified, this network can also be employed 

for the FIM-based assessment of parameter uniqueness as introduced in Section 

5.3.1. This is specifically interesting as the required gradients for the FIM 

analysis can be approximated quickly by automatic differentiation (AD), the same 

technique used for approximating any physical gradients during the network 

training without the need for time-consuming numerical differentiation schemes. 
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In the follow-up tasks of WP2, this methodology will be investigated more 

thoroughly with respect to the different use case boundary conditions and 

objectives defined in Section 4 of this Deliverable. 

 

6. Conclusion 
 

This deliverable provides in the first part the formulation of the objectives, success 

criteria and boundary conditions of the three use cases considered in FASTEST: 

automotive, stationary energy storage and off-road mobile devices. The second 

part of the deliverable presents and evaluates the proposed model-based DoE 

approaches and methodologies to be applied in the upcoming stages of the 

FASTEST project. 

In Section 4, a thorough investigation of the presented use cases has been 

conducted in terms of battery testing boundary conditions. The considered testing 

procedures have been divided between those that need to be considered 

distinctively for each use case and those that are common among all use cases. 

Most notably, exemplary current profiles were presented for each use case which 

will be of high significance for the aging testing and related modelling activities 

throughout the rest of the project. 

In Section 5, the model-based DOE methodology for parameter estimation with 

reduced-order-models at cell level was presented. The main objective of this part 

is to propose a workflow that is able to accurately determine physics-based model 

parameters effectively enabling virtualization of tests in the hybrid testing platform 

developed within FASTEST. 

The Fisher information approach was developed to answer the question how 

uniquely a certain parameter is defined in the parametrized model and how does 

the measurement settings and measuring protocol impact the uniqueness of 

parameter identification. The theory behind the FIM approach was presented and 

initial results of the approach were shown. The results revealed an important 

insight into the certainty of the determination of the chosen calibration parameters 

and the correlation between the individual parameters. Based on this approach, 

an innovative methodology was proposed to define the optimal design of 

experiment, which can reduce the time and costs for experimental testing further 

after the initial model parametrization is done. 

Although, the computationally efficient electrochemical models will be used in the 

FASTEST project, they might still feature high combined computational times when 

searching for optimal DoE. To further push the DOE methodologies beyond the 

state-of-the-art and further optimize and reduce experimental costs during battery 

testing, Physics-Informed Neural Networks (PINNs) were identified as promising 

and emerging option due to their high versatility and extremely fast inference 

times in the order of milliseconds. 
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