

EUROPEAN COMMISSION

HORIZON EUROPE PROGRAMME – TOPIC: HORIZON-CL5-2022-D2-01

FASTEST

Fast-track hybrid testing platform for the development of

battery systems

Deliverable D6.2: Scheduling Software

Solution

Primary Author [Dr. Shuchen Liu]

Organization [FEV]

Date: [29.11.2024]

Doc.Version: [V1.0]

Co-funded by the European Union and UKRI under grant agreements N° 101103755 and 10078013, respectively. Views and

opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the

European Climate, Infrastructure and Environment Executive Agency (CINEA). Neither the European Union nor CINEA can be

held responsible for them

Ref. Ares(2024)8514457 - 29/11/2024

 D6.2: Scheduling Software Solution

Page 2 of 28

Date: 29/11/2024

Document Control Information

Settings Value

Work package:
6 – Development of hybrid testing

platform

Deliverable: Scheduling software solution

Deliverable Type: R – Document, report

Dissemination Level: PU - Public

Due Date: 30.11.2024 (Month 18)

Actual Submission Date: 29.11.2024

Pages: < 28 >

Doc. Version: V1.0

GA Number: 101103755

Project Coordinator:
Bruno Rodrigues│ ABEE
(bruno.rodrigues@abeegroup.com)

Formal Reviewers

Name Organization Date

Eliana Giovannitti COMAU 22.11.2024

Philipp Brendel FHG 20.11.2024

Document History

Version Date Description Author

0.9 06.11.2024 First Draft

Dr. Shuchen Liu (FEV)
Felix Pischinger (FEV)

Bruno Rodrigues (ABEE)
Antonio Silvio de Letteriis (Flash
Battery)

Silvia Delbono (Flash Battery)

1.0 29.11.2024
Submission

Version

Dr. Shuchen Liu (FEV)

Felix Pischinger (FEV)
Bruno Rodrigues (ABEE)

Antonio Silvio de Letteriis (Flash
Battery)
Silvia Delbono (Flash Battery)

 D6.2: Scheduling Software Solution

Page 3 of 28

Date: 29/11/2024

Project Abstract

Current methods to evaluate Li-ion batteries safety, performance, reliability and

lifetime represent a remarkable resource consumption for the overall battery R&D

process. The time or number of tests required, the expensive equipment and a

generalized trial-error approach are determining factors, together with a lack of

understanding of the complex multiscale and multi-physics phenomena in the

battery system. Besides, testing facilities are operated locally, meaning that data

management is handled directly in the facility, and that experimentation is done

on one test bench.

The FASTEST project aims develop and validate a fast-track testing platform able

to deliver a strategy based on Design of Experiments (DoE) and robust testing

results, combining multi-scale and multi-physics virtual and physical testing. This

will enable an accelerated battery system R&D and more reliable, safer and long-

lasting battery system designs. The project’s prototype of a fast-track hybrid

testing platform aims for a new holistic and interconnected approach. From a global

test facility perspective, additional services like smart DoE algorithms, virtualized

benches, and DT data are incorporated into the daily facility operation to reach a

new level of efficiency.

During the project, FASTEST consortium aims to develop up to TRL 6 the platform

and its components: the optimal DoE strategies according to three different use

cases (automotive, stationary, and off-road); two different cell chemistries, 3b and

4 solid-state (oxide polymer electrolyte); the development of a complete set of

physic-based and data driven models able to substitute physical characterization

experiments; and the overarching Digital Twin architecture managing the

information flows, and the TRL6 proven and integrated prototype of the hybrid

testing platform.

 D6.2: Scheduling Software Solution

Page 4 of 28

Date: 29/11/2024

LIST OF ABBREVIATIONS, ACRONYMS AND DEFINITIONS

Acronym Name

AKS Azure Kubernetes Services

AI Artificial intelligence

DT Digital Twin

UUT Unit Under Test

Dx.x
Deliverable within the FASTEST
Context

B&B Branch and Bound Algorithm

SQL Structured Query Language

DB Database

HTTP Hypertext Transfer Protocol

DoE Design of Experiments

MIP Mixed-Integer Programming

ACR Azure Container Services

POC Proof Of Concept

LIMS
Laboratory Inventory

Management System

MQTT
Message Queuing Telemetry

Transport

LIST OF TABLES

Table 1 List of Notations ... 15
Table 2 Description of actions and activities ... 21

LIST OF FIGURES

Figure 1. Scheme of the optimization solver (Gurobi Optimization LLC, MIP, 2024)

 .. 12
Figure 2. Representation of an order assignment .. 15
Figure 3. Concept of integrating the test scheduling algorithm into LIMS 20
Figure 4. Azure Function HTTP Trigger Test .. 23
Figure 5. Azure Function HTTP Trigger Test - Log .. 23
Figure 6. Updated database - “t_optimized_test_schedule” 24
Figure 7. Input dummy data from database ... 25
Figure 8. Optimized scheduling diagram .. 25
Figure 9. Verification results .. 26

 D6.2: Scheduling Software Solution

Page 5 of 28

Date: 29/11/2024

Table of Contents

1. EXECUTIVE SUMMARY ... 6

2. OBJECTIVES .. 7

3. INTRODUCTION ... 8

3.1 Retrospect on Theoretical Foundation and Concept of Resource Scheduling

 9

3.2 Key Optimization Strategies ... 9

3.3 Gap Analysis from Theory to Practice .. 10

4. Development of Task Scheduling Algorithm... 11

4.1 Implementation of the solution approach 11

4.2 Deploying the mathematical model ... 12

4.2.1 Subdividing the planning problem ... 13

4.2.2 Choice of decision variables ... 14

4.2.3 Definition of the base model .. 16

4.2.4 Definition of the objective function .. 17

4.2.5 Definition of boundary conditions .. 19

4.3 Integration of the solution approach into LIMS 20

5. Results ... 22

5.1 Connection to LIMS Data Management to Scheduling Algorithm 22

5.1.1 Test HTTP Trigger ... 22

5.1.2 Test SQL database commit .. 23

5.2 Verification of the Scheduling Algorithm ... 24

5.2.1 Test Description ... 24

5.2.2 Test Results and Evaluation ... 24

6. Conclusion & Next steps .. 27

7. Bibliography .. 28

 D6.2: Scheduling Software Solution

Page 6 of 28

Date: 29/11/2024

1. EXECUTIVE SUMMARY

The objective of Deliverable D6.2 in the FASTEST project was to develop and

implement a scheduling software solution to optimize battery testing processes.

This report documents the design and deployment of a task scheduling algorithm

integrated within the Laboratory Information Management System (LIMS). The

primary objective of the scheduling algorithm was to ensure efficient allocation of

resources across both virtual and physical test benches, reduce idle time, and

minimize delays, thereby enhancing the productivity and cost-effectiveness.

The scheduling algorithm, based on the sequence-based Compact Model, advances

beyond traditional methods by leveraging the solver’s multithreading capabilities

and custom branching heuristics. This allowed for the parallelization of tasks and

improved prioritization of high-priority tests. Notably, these optimizations reduce

the computational complexity typically associated with Branch and Bound (B&B)

algorithms in scheduling contexts, achieving faster processing times and higher-

quality solutions.

The key progress achieved includes the algorithm’s successful deployment,

validated through designed test cases that demonstrated significant reductions in

both delay of testing and resource vacancies. The system was further extended to

handle complex scheduling requirements by introducing constraints for resource

limitations, prioritization, and unexpected events. This comprehensive integration

of the scheduling algorithm into the LIMS workflow marks a substantial

improvement over conventional approaches, setting a new standard for task

scheduling efficiency in battery testing environments.

 D6.2: Scheduling Software Solution

Page 7 of 28

Date: 29/11/2024

2. OBJECTIVES

The development of the task scheduling algorithm was a crucial step in the

FASTEST project, as it aimed to optimize the utilization of testing resources and

minimize the time and cost associated with battery testing.

Defining the Algorithm's Objectives

The first step was to clearly define the objectives of the scheduling algorithm. In

the context of the FASTEST project, the objectives of the task scheduling algorithm

are as follows:

• Efficiently allocate testing resources: This included physical test benches,

simulation resources. The algorithm was designed to assign the right

resources to the right tasks at the right time.

• Optimize testing schedules: The algorithm was designed to create efficient

testing schedules that minimized the overall testing time and cost. This

included considering factors such as resource availability, and deadlines.

• Improve test centre efficiency: The algorithm aimed to contribute to the

overall efficiency of the test centre by maximizing resource utilization and

reducing idle time.

 D6.2: Scheduling Software Solution

Page 8 of 28

Date: 29/11/2024

3. INTRODUCTION

Deploying the mathematical model involved integrating the task scheduling

algorithm into the testing process, ensuring seamless operation with both virtual

and physical environments. This required incorporating the algorithm into the test

centre's data model, which contained essential information about test demands,

configurations, and overall planning. By accessing this data, the algorithm could

make informed scheduling decisions.

The algorithm interacted with both virtual test benches—simulation environments

for virtual tests—and physical test benches used for actual batteries or

components. It scheduled tests efficiently by considering resource availability.

Effective data exchange and communication protocols were established to ensure

the algorithm received necessary information and could send scheduling

instructions appropriately. In some cases, real-time adjustments were possible,

allowing the algorithm to update scheduling decisions based on the status of test

benches and resource availability. After deployment, performance metrics such as

resource utilization, testing time, and cost were monitored to evaluate and refine

the algorithm's effectiveness.

Integrating the solution into the Laboratory Information Management System

(LIMS) was the final step. The LIMS was connected to the Digital Twin (DT) system

to access comprehensive information about the Unit Under Test (UUT), including

lifecycle data, descriptive details, existing models, and prior test data. The

scheduling algorithm was seamlessly incorporated into the LIMS workflow,

managing test demands, resource allocation, and scheduling within a unified

platform. Effective communication protocols ensured the LIMS could retrieve

necessary information from the DT system to optimize scheduling decisions. A

user-friendly interface allowed lab personnel to interact with the algorithm,

visualize the testing schedule, and track test progress. The “as fast as possible”

data exchange between the LIMS and the DT system ensured that any changes in

the UUT's status or resource availability were immediately reflected in scheduling

decisions. This integration operationalized the optimized scheduling capabilities

developed in the project, achieving a more efficient and cost-effective battery

testing process.

The remaining content of this document is structured as following:

In the rest of the Chapter 3, further background information is provided. This

information is required to understand the further approach in Chapter 4. For a

more detailed understanding of this information, it is recommended to take a

deeper look into D6.1, where the foundations for this task have been developed.

Chapter 4 covers the development of the executable scheduling algorithm. This

includes the development of the mathematical model and the implementation with

suitable tools and software.

 D6.2: Scheduling Software Solution

Page 9 of 28

Date: 29/11/2024

3.1 Retrospect on Theoretical Foundation and Concept of Resource

Scheduling

Selecting Appropriate Optimization Techniques

Once the objectives were defined, the next step was to select the appropriate

optimization techniques. Some possible optimization techniques that were

considered for the FASTEST project included:

• Linear programming: This technique is used to optimize a linear objective

function, subject to linear equality and inequality constraints.

• Integer programming: This technique is used when some or all the variables

are restricted to be integers.

• Constraint programming: This technique is used to find solutions that satisfy

a set of constraints.

• Heuristic algorithms: These algorithms are used to find good solutions to

optimization problems in a reasonable amount of time, even if they are not

guaranteed to be optimal.

• Artificial intelligence (AI) methods: AI methods, such as machine learning,

can be used to learn from historical data and make predictions about future

testing needs.

The choice of optimization technique depended on the specific characteristics of

the scheduling problem, such as the number of tasks, the number of resources,

and the complexity of the constraints.

As outcome of the detailed analysis in D6.1, it was decided to formulate the

scheduling problem as mixed-integer programming (MIP) problem which will be

solved using the Branch and Bound (B&B) algorithm.

3.2 Key Optimization Strategies

For a specific task scheduling problem, Wang's (Wang, 2018) sequence-based

Compact Model is utilized. The goal is to reduce computational complexity and

improve solution quality by aligning with the model's decision variables and

objectives, which will be introduced in next chapter in detail and summarized as

follows:

• Efficient Use of Decision Variables: By focusing on sequence-related binary

variables that represent task precedence, the number of constraints and

branching nodes is reduced. Simplifying time-related variables to only starting

and completion times lessens computational burden.

• Effective Branching Strategies: Prioritizing branching on sequence-related

variables directly addresses ordering constraints, leading to quicker pruning of

infeasible sequences. Heuristics that prioritize tasks with tight deadlines or high

delay penalties help find feasible solutions more rapidly.

 D6.2: Scheduling Software Solution

Page 10 of 28

Date: 29/11/2024

• Objective Function Optimization: Introducing techniques like linearization or

lexicographic optimization balances conflicting objectives such as minimizing

vacancies and delays. Adjusting weighting parameters focuses the algorithm

on subproblems that significantly impact the objective function.

• Parallelization with Optimization Solver: Leveraging the solver’s multithreading

capabilities allows for parallel exploration of branches, accelerating

convergence. Custom branching strategies that prioritize critical tasks and

resources improve solution quality.

• Post-Solution Analysis: Using Gantt charts for visual feedback helps identify

inefficiencies like idle times, enabling further refinement. Implementing

adaptive gap tolerances allows for early termination when acceptable solution

quality is reached, which is beneficial for large instances.

3.3 Gap Analysis from Theory to Practice

Implementing the Algorithm in a Prototype Software Solution

The final step was to implement the algorithm in a prototype software solution.

In the FASTEST project, the scheduling algorithm was implemented in a software

solution that could be integrated with the test centre’s data model and the LIMS.

This allowed the algorithm to access the necessary information about test

demands, configurations, and planning, as well as the status of virtual and physical

test benches.

The prototype software solution was tested and validated using designed use cases

to ensure it met the objectives of the scheduling algorithm. This involved

evaluating the algorithm's performance in terms of efficiency, scalability, and

accuracy. The development of the task scheduling algorithm was an iterative

process that involved continuous refinement and improvement. The prototype

software solution was regularly updated and enhanced based on feedback from

the project partners and the results of testing and validation.

 D6.2: Scheduling Software Solution

Page 11 of 28

Date: 29/11/2024

4. Development of Task Scheduling Algorithm

In the previous delivery D6.1 the B&B algorithm was selected as a solution

approach. In this chapter, it is applied to the planning problem of identically parallel

machines. The first chapter introduces the tools that are used to solve the problem.

Subsequently, the general procedure is explained and the modelling of the planning

situation in a mixed integer program is derived step by step.

4.1 Implementation of the solution approach
In this chapter, a mathematical description is given in the form of a mixed-integer

program. The latter then represents the basis on which the B&B algorithm is

applied. For the B&B algorithm, the optimization software Gurobi is used (Gurobi

Optimizer LLC, Reference Manual, 2024). Gurobi is, among other things, a

framework for solving mixed-integer programs. In the following, Gurobi is

introduced in more detail.

Gurobi is a solver designed for handling numerical programming tasks. Beside the

B&B algorithm it consists of further procedures for the reduction of the complexity

and acceleration of the solution finding. These procedures are:

• The Pre-solve process checks in the first step whether restrictions of the

modelling can be narrowed so that constraints coincide. This reduces the

complexity of the problem and speeds up algebraic operations.

• With the help of a relaxation, the mixed integer program is converted into a

purely linear program. This means that the integer condition is removed for

all variables. Optimal admissible solutions are then calculated for the relaxed

program. These can then serve as bounds for the mixed integer program.

• The cutting plane method is applied to a relaxed version of the program.

During the solution process, additional constraints are introduced near

admissible solutions to further restrict the solution space. In the context of

the Gurobi solver, Gomory mixed integer, mixed integer rounding, flow-over

and lift-and-project cuts, among others, are applied.

• In addition to branching the solution tree in the context of the B&B algorithm

help heuristics to improve the quality of the solution. On the one hand, via

Start Heuristics generate new admissible solutions and on the other hand

Improvement Heuristics improve found solutions. In the context of Start

Heuristics, Rounding Heuristics, Feasibility Pumps and Fix-and-dive

Heuristics are applied and in the context of Improvement Heuristics the

methods Local Branching, Crossover and 1-Opt and 2-Opt are used.

The pre-solve process is run once before the algorithm is applied. The algorithm

then iterates through the next steps until the optimal solution is found or a

termination criterion is reached. The procedure of the algorithm is shown in the

right part of Figure 1. In the first step, a node is selected in the solution tree. Then,

solutions for the subproblem are determined for this node. Based on the first

solution, the relaxation of the problem starts. The cutting plane method is then

applied to the relaxed problem before heuristics are used to determine further

 D6.2: Scheduling Software Solution

Page 12 of 28

Date: 29/11/2024

admissible and improved solutions in the penultimate step. Finally, the solution

tree is re-branched and thus extended by new nodes, whereupon a new iteration

step starts, and the new nodes are selected and solved.

Figure 1. Scheme of the optimization solver (Gurobi Optimization LLC, MIP,

2024)

In this work, the modelling is implemented using the Gurobi framework in the

Python programming language. For the solver to solve the planning problem the

information about orders and test stands must be prepared. This is done in the

preprocessing step. For this purpose, orders and test benches are to be queried

from the information management system and stored in data structures in Python.

Orders and test bench information are fetched from an SQL database. During pre-

processing, the order pool is defined for each order by comparing the test bench and

order properties. Once all the information has been transferred to the solver,

optimization is performed using the scheme described in the previous paragraph.

After the optimization follows the step Postprocessing. Here the information about

the solution is read out from the solver. This includes reading out the start and end

times of the orders, the assignment to which machine which order is carried out

with which resource and the number of delays and vacancies. In the last step, this

information is visualized in a Gantt chart. The optimization procedure is illustrated

in Figure 1.

4.2 Deploying the mathematical model
In this section, the planning situation of a battery test field is to be abstracted in

a linear program. A linear program consists of an objective function, constraints,

variables and parameters. A linear program is basically of the following form:

 Objective function minimize ∑  

𝑎∈𝐴

𝑐𝑎 ⋅ 𝑥𝑎

 Constraints subject to ∑  

𝑎∈𝐴

𝑘𝑝,𝑎 ⋅ 𝑥𝑎 = ℎ𝑝, ∀𝑝 ∈ 𝑃

 D6.2: Scheduling Software Solution

Page 13 of 28

Date: 29/11/2024

 𝑙𝑎 ≤ 𝑥𝑎 ≤ 𝑢𝑎 , ∀𝑎 ∈ 𝐴

 Variables 𝑥𝑎 : Decision variables

 𝑐𝑎, 𝑘𝑝,𝑎, ℎ𝑝, 𝑙𝑎, 𝑢𝑎 : Parameters

 𝑎, 𝑝: Indices

 𝐴, 𝑃: Number of jobs and test benches

With the help of the linear program, all planning-relevant information is transferred

into linear relationships. First, the decision variables are defined. This is followed

by the definition of the objective function and restrictions. A planning problem can

be modelled in different ways. The choice of the decision variables has a decisive

influence on the form of the modelling and the later runtime behaviour of the

algorithm. The difficulty is to choose a modelling that meets all planning

requirements and works efficiently at the same time.

4.2.1 Subdividing the planning problem

In addition to the choice of decision variables, the size of the model also has a

significant impact on the runtime of the algorithm. To address this, it may be useful

to break down the planning situation into subproblems, reducing the complexity of

the planning problem. However, it is known from D6.1. that dividing a planning

problem into subproblems can reduce overall optimality. Therefore, it is essential

to weigh whether the advantages of a subdivision outweigh the disadvantages.

Basically, the more independent the subproblems are from each other, the better

a subdivision is possible. Conversely, if there are interactions between the

subproblems, synergies cannot be exploited. If two problems are addressed

separately, resources and information cannot be shared, and in the case of an

optimization problem, the objective variables for the two subproblems are

optimized independently. This independence is not a problem if there are no

dependencies between the two objective variables. However, if dependencies exist,

it can reduce the optimality of the global solution.

In the context of battery test field, dividing the planning problem into the three

domains of endurance, environment and misuse is a potential approach. As noted

in D6.1 these three domains differ in many ways. A separate consideration of the

three domains would be feasible if the interactions between the domains are small.

That is, the three areas are likely to share orders or resources of the same type

only to a minor extent. The first step is to evaluate the extent to which the areas

share the same orders. For the abuse area, eligible orders can be carried out

exclusively within that domain, and orders that are eligible for the other two areas

cannot be processed there. Thus, the Abuse area does not share any orders with

the Environment and Endurance areas. However, the same cannot be said for

orders in the endurance and environmental areas. The environmental area includes

a small number of temperature and climate chambers for preconditioning of test

specimens. Technically, these are the same chambers as they also exist in the

endurance range. It would therefore be possible, in the event of overload of the

chambers in the environmental area to chambers in the continuous operation area

 D6.2: Scheduling Software Solution

Page 14 of 28

Date: 29/11/2024

and vice versa. However, the proportion of such shared orders is so small that this

case does not need to be automated in the planning. Resource sharing present a

more significant challenge. For the complete test field, three types of resources

are considered: technical devices, energetic capacities and personnel capacities.

While most technical devices are specific to their areas, energetic and personnel

capacities are shared across domains. Treating these areas separately, would

require a separate set of energetic and personnel capacities for each area. If there

were unused capacities in one area, these could then not be assigned to another

area within the framework of automated planning. Finally, it cannot be judged

exactly whether the subdivision of the planning situation justifies the loss of

optimality. To avoid giving the definite answer to this question now and to retain

flexibility for future adjustments, a modelling with components is used.

A base modelling is developed that meets the basic requirements of all three

domains. Any further domain-specific requirements are handled in the form of

additional components that can be integrated into the base model. The base model

can thus be applied either to individual areas or to the complete test field. In

addition, this offers the possibility of expanding or restricting the individual areas

with components at a later point in time.

4.2.2 Choice of decision variables

While modelling, the first step is to define the decision variable. In principle, two

different formulations are possible, which differ in terms of their indexation.

Seelbach (Seelbach, 1975) distinguishes between time-related and sequence-

related decision variables. In the context of time-related decision variables, it is

determined for each test stand and each order at a time unit whether an

assignment is made or not. An example is the binary variable xa,p,t , which takes

the value 1 if the order a is carried out on the test bench p at the time unit t. A

sequence-related decision variable, on the other hand, specifies the relative

sequence of two orders.

A binary variable of the form ya1, a2 can be used to specify whether the order a1

before the Order a2 is executed (ya1, a2 = 1) or not (ya1, a2 = 0). For sequence-

related decision variables, the temporal structure must also be described using

other variables. In addition to time- and sequence-related decision variables, a

distinction is made between binary decision variables (x ∈ {0, 1}) and integer

decision variables (x ∈ Z). A modelling via exclusively binary variables usually leads

to a high number of variables. Binary variables can only take one of two values,

whereas integer variables can take any value from Z. This makes it difficult for the

solver to handle integer variables. For the solver, this complicates the handling of

integer variables. Ultimately, which choice of variables is appropriate depends on

the specific problem. Wang (Wang, 2018) evaluated five different modelling

approaches for a scheduling problem of identically parallel machines with

precedents as part of his dissertation. Four of the modelling approaches use

sequence-related decision variables and one modelling approach uses time-related

decision variables. All five approaches are based on a discrete time understanding.

 D6.2: Scheduling Software Solution

Page 15 of 28

Date: 29/11/2024

For this purpose, the time horizon is divided into time slots as shown in Figure 2.

Each time slot is defined starting from the now time t = 0. Starting from t = 0, the

job a1 starts in t = sa1 and ends in t = ca1.

The test results from Wang (Wang, 2018) show that sequence-based modelling is

characterized by significantly faster processing times. The best result is achieved

by what he calls the "Compact Model", which is based on modelling with sequence-

related decision variables and, through clever indexing, can be implemented with

fewer restrictions.

Figure 2. Representation of an order assignment

In the following, the decision variables of the Compact Model are therefore adopted.

In connection with this, a discrete time understanding is also chosen for the modelling

of the basic model. It should be noted that a time slot stands for a period that can

be defined arbitrarily. Depending on the situation, a time slot can be an hour, a

day or the length of a shift. Within the model, however, all time slots have the

same length.

The following table summarizes all notation agreements made for the base model.

Table 1 List of Notations

Indexes

a Test order a ∈ A

 p Test bench p ∈ P

Parameters A Quantity of all test orders

 P Quantity of all test benches

 D6.2: Scheduling Software Solution

Page 16 of 28

Date: 29/11/2024

 ra Release time of order a ∈ A, ra ∈ N0

 ba Processing time of order a ∈ A, ba ∈ N0

 da Deadline of order a ∈ A, da ∈ N0

 gL Weighting of the sum of all vacancies ΣL , gL ∈ [0, 1]

 gV Weighting of the sum of all delays ΣV , gV ∈ [0, 1].

 M Sufficiently large number

Supporting ca Completion time of job a ∈ A, ca ∈ N0

variables va Delay or missed deadline of order a ∈ A, va ∈ N0

 ep Completion time of the last order on the test bench p ∈ P,

ep ∈ N0

 lp Number of vacancies on test bench p ∈ P, lp ∈ N0

 ΣB Sum of the processing times of all orders of a test bench

p ∈ P, ΣB ∈ N0

Decision sa Start time of job a ∈ A, sa ∈ N0

variables xa,p ≔ {
1, if job a ∈ A is processed on test bench p ∈ P

0, otherwise

 ya1,a2 ≔ {
1, if order a1 ∈ A is executed before order a2 ∈ A

0, otherwise

Objectives Z The total objective function value, Z ∈ R+

 ΣL Sum of all vacancies on all test beds, ΣL ∈ N0

 ΣV Sum of all delays for all orders, ΣV ∈ N0

4.2.3 Definition of the base model

In the following, a model is derived from the requirements defined in D6.1. The

modelling consists of two parts. The first part is the definition of the base model.

The base model covers the requirements (1)-(6) from D6.1. In the second part,

the model is extended to include the boundary conditions that are not yet covered.

For the base model, the following auxiliary variables are introduced with the

following definition:

 D6.2: Scheduling Software Solution

Page 17 of 28

Date: 29/11/2024

𝑐𝑎 = 𝑠𝑎 + 𝑏𝑎, ∀𝑎 ∈ 𝐴

𝑣𝑎 = {
𝑐𝑎 − 𝑑𝑎 , for 𝑐𝑎 − 𝑑𝑎 ≥ 0
0, otherwise

, ∀𝑎 ∈ 𝐴

𝑙𝑝 = 𝑒𝑝 − Σ𝐵, ∀𝑝 ∈ 𝑃

Σ𝐵 = ∑  

𝑎∈𝐴

 𝑥𝑎,𝑝 ⋅ 𝑏𝑎, ∀𝑝 ∈ 𝑃

Σ𝐿 = ∑  

𝑝∈𝑃

  𝑙𝑝

Σ𝑉 = ∑  

𝑎∈𝐴

 𝑣𝑎

A description of the auxiliary variables follows: The completion time ca is the sum

of the start time sa and the processing time ba of an order a. The delay va is

determined from the difference between the deadline min da and the actual

completion date ca. The definition is chosen in such a way that exceeding the

deadline takes on positive values. If an order is completed before its deadline date,

the delay is set to zero. The amount of vacancy of a test stand lp is defined by the

time when the last job on a test stand is completed, ep minus the sum of all

processing durations of the same test stand. ΣB is the sum of all processing

durations on a test bench, equation. ΣL is the sum of all idle times on a test stand.

ΣV is the sum of all delays.

The definition of the delay uses a case distinction. This case distinction is translated

into linear equations with the help of two binary variables wa and �̅�𝑎 . For this

purpose, wa and �̅�𝑎 are defined as follows:

𝑤𝑎 = {
1, for 𝑐𝑎 − 𝑑𝑎 > 0
0, otherwise

, ∀𝑎 ∈ 𝐴

�̅�𝑎 = {
1, for 𝑐𝑎 − 𝑑𝑎 ≤ 0
0, otherwise

, ∀𝑎 ∈ 𝐴

With the help of wa it can be guaranteed that va = ca - da only holds if ca - da > 0.

For this purpose, following equations are added to the model.

𝑣𝑎 = (𝑐𝑎 − 𝑑𝑎) ⋅ 𝑤𝑎, ∀𝑎 ∈ 𝐴

𝑐𝑎 − 𝑑𝑎 ≤ 𝑀 ⋅ 𝑤𝑎 , ∀𝑎 ∈ 𝐴

𝑑𝑎 − 𝑐𝑎 < 𝑀 ⋅ 𝑤‾𝑎 , ∀𝑎 ∈ 𝐴

𝑤𝑎 + 𝑤‾𝑎 = 1, ∀𝑎 ∈ 𝐴

The second and third equation above guarantee that wa and �̅�𝑎 take the correct

values depending on ca and da. The last equation guarantees that only one of the

two binary variables is active for an order. Here, M is a sufficiently large number

to ensure that the irrelevant inequality does not further restrict the solution space.

This approach is known as the "Big M" method.

4.2.4 Definition of the objective function

For optimization models with multiple objectives, Gurobi (Gurobi Optimizer LLC,

Reference Manual, 2024) offers an approach to manage and configure those:

 D6.2: Scheduling Software Solution

Page 18 of 28

Date: 29/11/2024

“The main challenge you face when working with multiple, competing

objectives is deciding how to manage the trade-offs between them.

Gurobi provides tools that simplify the task: Gurobi allows you to blend

multiple objectives, to treat them hierarchically, or to combine the two

approaches. In a blended approach, you optimize a weighted

combination of the individual objectives. In a hierarchical or

lexicographic approach, you set a priority for each objective and

optimize in priority order. When optimizing for one objective, you only

consider solutions that would not degrade the objective values of

higher-priority objectives. Gurobi allows you to enter and manage

your objectives, to provide weights for a blended approach, and to set

priorities for a hierarchical approach.”

Within the framework of the basic model, the number of all vacancies and the

deadline overruns are considered in the objective function in accordance with the

planning requirements (5) and (6) from D6.1. It would also be possible to consider

schedule overruns in the form of constraints. However, this does not make sense

for the planning situation, since one unavoidable delay would make the model

unsolvable in this case.

The number of vacancies is captured by the auxiliary variable ΣL. For the sum of

delays, the variable ΣV was introduced. Both variables are minimized. To link the

two target quantities, the multi objective functionality of Gurobi can be used (

(Gurobi Optimizer LLC, Reference Manual, 2024)– Multiple Objects). This

functionality allows to set several configurations such as prioritization for each

objective:

 Model.setObjectiveN()
 setObjectiveN (expr, index, priority=0, weight=1, abstol=1e-6, reltol=0, name="")

 Set an alternative optimization objective equal to a linear expression.

Arguments:
expr (LinExpr): New alternative objective.

index (int): Index for new objective. If you use an index of 0, this routine will change
the primary optimization objective.

priority (int, optional): Priority for the alternative objective. This initializes the
ObjNPriority attribute for this objective.

weight (float, optional): Weight for the alternative objective. This initializes the

ObjNWeight attribute for this objective.

abstol (float, optional): Absolute tolerance for the alternative objective. This initializes
the ObjNAbsTol attribute for this objective.

reltol (float, optional): Relative tolerance for the alternative objective. This initializes

the ObjNRelTol attribute for this objective.

name (string, optional): Name of the alternative objective. This initializes the
ObjNName attribute for this objective.

 Thus, the objective functions results in:

 D6.2: Scheduling Software Solution

Page 19 of 28

Date: 29/11/2024

 Model.setObjectiveN(vacancies, index=1, priority=1, reltol=0.0, name='Vacancy')
Model.setObjectiveN(delays, index=0, priority=2, reltol=0.2, name='Delay')

Setting the index of the delays to 0 will make the minimization of the delays the

primary objective for the optimization. The “reltol” will allow to exceed the optimal

delay solution to optimize the second objective vacancies.

4.2.5 Definition of boundary conditions

For two consecutive jobs, the next job can only start when the previous job is

finished. In the following, the one-machine case is considered. For two jobs a1 and

a2, two situations can occur in this case. Either job a1 is executed before job a2,

also a1 ≺ a2 is written, or vice versa, a1 ≻ a2. For both cases, a sequence condition

can be defined. Therefore holds:

𝑠𝑎2
≥ 𝑠𝑎1

+ 𝑏𝑎1
 ∨ 𝑠𝑎1

≥ 𝑠𝑎2
+ 𝑏𝑎2

, ∀𝑎1, 𝑎2 ∈ 𝐴, 𝑎1 ≠ 𝑎2

This condition must be transformed into a linear inequality. For this purpose, the

binary variable ya1, a2 is introduced as defined in Table 1 in the section Decision

variables. The binary variable can be used to formulate the following two linear

inequalities.

𝑠𝑎2
≥ 𝑠𝑎1

+ 𝑏𝑎1
− 𝑀 ⋅ (1 − 𝑦𝑎1,𝑎2

), ∀𝑎1, 𝑎2 ∈ 𝐴, 𝑎1 ≠ 𝑎2

𝑠𝑎1
≥ 𝑠𝑎2

+ 𝑏𝑎2
− 𝑀 ⋅ (𝑦𝑎1,𝑎2

), ∀𝑎1, 𝑎2 ∈ 𝐴, 𝑎1 ≠ 𝑎2

The binary variable ensures that only one of the two inequalities is considered. M

is again a sufficiently large number. For the transition from the single-machine

case to the multiple-machine case, the binary variable xa,p is additionally

introduced, which assumes 1, when job a is performed on test bench p. A definition

of the variable xa,p is given in Table 1. To complete the definition of the base model,

two more equations are added to the modelling. These Equations ensure that the

start time of an order is after its release time. This results in the basic model as

follows:

𝐦𝐢𝐧 Z

𝐬. 𝐭.
⬚
⬚
⬚

𝑠𝑎2
≥ 𝑠𝑎1

+ 𝑏𝑎1
− 𝑀 ⋅ (1 − 𝑦𝑎1,𝑎2

+ 1 − 𝑥𝑎1,𝑝 + 1 − 𝑥𝑎2,𝑝), ∀𝑎1, 𝑎2 ∈ 𝐴, ∀𝑝 ∈ 𝑃

𝑠𝑎1
≥ 𝑠𝑎2

+ 𝑏𝑎2
− 𝑀 ⋅ (𝑦𝑎1,𝑎2

+ 1 − 𝑥𝑎1,𝑝 + 1 − 𝑥𝑎2,𝑝), ∀𝑎1, 𝑎2 ∈ 𝐴, ∀𝑝 ∈ 𝑃

∑  

𝑝∈𝑃

 𝑥𝑎,𝑝 = 1, ∀𝑎 ∈ 𝐴

𝑠𝑎 ≥ 𝑟𝑎, ∀𝑎 ∈ 𝐴

The binary variable ya1, a2 is, in the context of the basic model, on the one hand a

decision variable, which is set by the solver when the order of two orders is

specified. However, ya1, a2 can additionally be used to implement precedents

according to requirement (4) from D6.1. In this case, when building the model,

the variable ya1, a2 is set equal to 1 for two concrete orders a1 and a2, provided that

order a1 is to be performed before order a2. In this case, ya1, a2 is no longer a

 D6.2: Scheduling Software Solution

Page 20 of 28

Date: 29/11/2024

decision variable, but a parameter. In general, this means that for a set Q of tuples

(a1, a2) with a1 ≺ a2 three equations can be defined, so that the desired precedence

relations are ensured:

𝑠𝑎2
 ≥ 𝑠𝑎1

+ 𝑏𝑎1
, ∀(𝑎1, 𝑎2) ∈ 𝑄

𝑦𝑎1,𝑎2
 = 1, ∀(𝑎1, 𝑎2) ∈ 𝑄

𝑦𝑎1,𝑎2
+ 𝑦𝑎2,𝑎1

 = 1, ∀(𝑎1, 𝑎2) ∈ 𝑄

This point concludes the modelling of the basic model. Thus, the requirements

(1) - (6) from D6.1 have been successfully transferred into a mixed-integer

program. All previous equations are also fully translated into program code and

incorporated into the syntax of Gurobi.

4.3 Integration of the solution approach into LIMS

Since LIMS is already using Azure services, the decision was made to deploy the

algorithm as Azure Function (MS Azure, 2024) and take advantage of the

integration of the different services.

All information related to LIMS are stored in an Azure SQL Database. Any

information needed for the algorithm is fetched directly from the Database. After

the algorithm has calculated the solution, the database will be updated with

relevant information.

The algorithm is triggered by an http-trigger from LIMS whenever relevant data

has been added from a user. The following chart illustrates the interaction of LIMS

and the algorithm:

Figure 3. Concept of integrating the test scheduling algorithm into LIMS

Notably, this concept is part of the FEV Azure infrastructure, which is explained in

D6.5 in detail and interacts with other FASTEST components with help of LIMS data

 D6.2: Scheduling Software Solution

Page 21 of 28

Date: 29/11/2024

exchange and management. How the test scheduling algorithm interacts with other

components within LIMS is summarized as following table.

Table 2 Description of actions and activities

Type Action

1 Data transfer MQTT broker forwards the test request with preferred
timing from other FASTEST components

2 Data transfer App service saves the data and update the SQL
database

3 Trigger App service informs the scheduling algorithm that the
database is updated, and new test(s) shall be

scheduled
4 Data transfer The scheduling algorithm fetches the latest records

from the database
5 Execution The scheduling algorithm executes a new optimization

6 Data transfer The scheduling algorithm fetches the scheduling result
and update the SQL database

7 Trigger The scheduling algorithm informs App service about
the updated database

8 Data transfer App service fetches the data from SQL database

9 Data transfer App service forwards the data to the MQTT broker and
distribute the test to virtual and physical test benches

 D6.2: Scheduling Software Solution

Page 22 of 28

Date: 29/11/2024

5. Results

This chapter describes specific tests that are designed to verify the main

functionality of the implantation. This involves testing the proper integration of the

scheduling algorithm into the LIMS environment and the verification of the

scheduling algorithm. Objectives, descriptions and further metadata is listed in a

table at the start of each test. This is followed by a description of the test results

and an evaluation of the test.

5.1 Connection to LIMS Data Management to Scheduling Algorithm

5.1.1 Test HTTP Trigger

Partners System

Components

Date, Place Status

FEV LIMS 07.10.2024.

Online (Azure)

Passed

Objective of the Test

• Test the deployment and the communication to the azure function via the
http trigger

Test Description

• Check the response of http trigger within Azure Portal directly from the Azure

Function Test/Run Menu (Action #3 and #7)

Open Issues

• None

Results and Evaluation

After triggering the function, the response shows that the trigger is responding

and the function is sending a response message.

 D6.2: Scheduling Software Solution

Page 23 of 28

Date: 29/11/2024

Figure 4. Azure Function HTTP Trigger Test

The response message and successful execution can be verified in Figure 4 and

Figure 5.

Figure 5. Azure Function HTTP Trigger Test - Log

5.1.2 Test SQL database commit

Partners System

Components

Date, Place Status

FEV LIMS 07.10.2024.

Online (Azure)

Passed

Objective of the Test

• Ensure that the output of the algorithm is committed to the database
(Action #4 and #6)

Test Description

• Add test data to the database and check the output in the database after

running the algorithm

Open Issues

• None

Results and Evaluation

The algorithm fetches the relevant information from the database. The information

is then processed in the optimization algorithm and the optimized data is returned.

The results are committed to a related table “t_optimized_test_schedule”.

 D6.2: Scheduling Software Solution

Page 24 of 28

Date: 29/11/2024

Figure 6. Updated database - “t_optimized_test_schedule”

This table Figure 6 contains the column “dt_optimized_virtual_schedule” which

differs from the prescheduled input date. This is the suggested optimized start

date which considers the available testbenches and distributes the pending tests

among them. The updated table indicates that new data was successfully

committed to the database.

5.2 Verification of the Scheduling Algorithm

5.2.1 Test Description
Partners System

Components
Date, Place Status

FEV LIMS 31.10.2024.
Online (Azure)

Passed

Objective of the Test

Test if the output of the algorithm is valid (Action #5)

• Verification criteria:
1. No overlaying occupation of test benches
2. Minimum delay

3. Minimum vacancy

Test Description

Predefined and generated data is added to the database manually. After that the
Algorithm is executed and the results are analysed towards the verification

criteria.

Open Issues

• None

5.2.2 Test Results and Evaluation

In the following part of the database, the relevant information for the algorithm is

shown. This example data serves as input for the algorithm.

 D6.2: Scheduling Software Solution

Page 25 of 28

Date: 29/11/2024

Figure 7. Input dummy data from database

For this test only the virtual tests are scheduled (s_test_bench == “virtual”) and

only pending tests (status == “pending”).

From the initial test date “dt_prescheduled_test_date”, the estimated test duration

“s_prescheduled_test_duration” and the due date “dt_due_date” the algorithm

calculates an occupation time plan considering the objectives.

As mentioned in Sec 4.2.4 Definition of the objective function the highest priority

objective is the minimization of the delays. The second priority is the minimization

of the vacancies.

Figure 8. Optimized scheduling diagram

After running the algorithm, the results are illustrated as Figure 8. Optimized

scheduling diagram.

Each test in the diagram is shown as a block, where the x-axis marks the start and

end date of the test. The y-axis is defined as the test bench, each test is distributed

to. On each block information about the test can be found. If the test exceeds the

predefined due date, an extra information “Job is delayed” is added to the block.

This diagram only serves for a better readability and as base for the evaluation in

this deliverable.

To make this data available in LIMS, this information is added to the database as

well. Below in the table an excerpt of the result table is shown to highlight the

relevant information for this test:

Id s_test_name s_test_type s_test_benchdt_prescheduled_test_datestatus BatteryID s_prescheduled_test_duration dt_due_date

2 voltage_draining_01 electric virtual 31.10.2024 11:39 pending 1 76 31.10.2024 21:01

8 voltage_injection_01 electric virtual 31.10.2024 11:39 pending 4 25 31.10.2024 19:08

9 voltage_draining_01 electric virtual 31.10.2024 11:39 pending 3 35 31.10.2024 15:02

10 temperature_shock temperature virtual 31.10.2024 11:39 pending 4 28 31.10.2024 17:12

11 electronic_isolation_01 electronic virtual 31.10.2024 11:39 pending 3 40 31.10.2024 15:09

12 voltage_draining_01 electric virtual 31.10.2024 11:39 pending 1 73 31.10.2024 19:03

13 voltage_draining_01 electric virtual 31.10.2024 11:39 pending 3 46 31.10.2024 16:38

16 test1 electric virtual 31.10.2024 11:39 pending 1 33 31.10.2024 18:49

17 test1 electric virtual 31.10.2024 11:39 pending 1 25 31.10.2024 16:41

18 test2 electric virtual 31.10.2024 11:39 pending 1 29 31.10.2024 18:22

 D6.2: Scheduling Software Solution

Page 26 of 28

Date: 29/11/2024

Figure 9. Verification results

The test was executed at 31.10.2024 16:02. The due date and execution date have

been chosen intentionally in a way that some delays are inevitable to check the

behaviour of the algorithm in that case.

Verification of the task scheduling

1. Occupation:

Considering the result table and the result diagram it is evident that there is no

overlaying occupation of test benches.

Interpreting results regarding the minimization:

2. Delay:

The Tests with Test ID 9, 11, 13 and 17 are delayed.

For test 9 and 11 it is not possible to be in time since the due date is already in

the past.

For test 13 the due date is at 16:38 on 31.10.2024 which is after the start time

of 16:02. But looking at the test duration of 46 min, the earliest finish date would

be 16:42, which is 4 minutes late.

For test 17 the due date is at 16:41 on 31.10.2024 and the test duration is 25 min.

This results in the earliest finish date of 16:27, which would have been in time.

Still the algorithm schedules the test in a way which results in a delay. (test 17

finishes at 17:02)

The reason for the delay of test 17 is that the primary objective is not minimize

the number of delays, but the total sum of delay times. This ensures that no test

will be scheduled way back in the end to prefer other tests, e.g. the algorithm

could have started with Test 17 on “virtual_bench_1” instead of Test 9. In that

case there would have been one less delayed test. On the other hand, Test 9 would

have been delayed even more, which is also not wanted.

The optimization in this test run can also be seen that Test 17 is assigned to the

first available machine after Test 9, 11 and 13 have finished, which is after Test 9.

Id TestId dt_user_preferenced_virtual_scheduledt_optimized_virtual_schedule related_to_test scheduled_test_bench

18 9 31.10.2024 11:39 31.10.2024 16:02 voltage_draining_01 virtual_bench_3

19 10 31.10.2024 11:39 31.10.2024 16:42 temperature_shock virtual_bench_1

20 11 31.10.2024 11:39 31.10.2024 16:02 electronic_isolation_01 virtual_bench_1

21 12 31.10.2024 11:39 31.10.2024 17:27 voltage_draining_01 virtual_bench_3

22 13 31.10.2024 11:39 31.10.2024 16:02 voltage_draining_01 virtual_bench_2

23 16 31.10.2024 11:39 31.10.2024 17:17 test1 virtual_bench_2

24 17 31.10.2024 11:39 31.10.2024 16:37 test1 virtual_bench_3

25 18 31.10.2024 11:39 31.10.2024 16:48 test2 virtual_bench_2

26 2 31.10.2024 11:39 31.10.2024 17:10 voltage_draining_01 virtual_bench_1

27 8 31.10.2024 11:39 31.10.2024 17:02 voltage_injection_01 virtual_bench_3

 D6.2: Scheduling Software Solution

Page 27 of 28

Date: 29/11/2024

3. Vacancy:

The total vacancy of all Tests is zero.

The “dt_prescheduled_test_date” in this example data is before the execution date

of the algorithm. In this case all tests are immediately released and therefore any

vacancy would indicate a malfunction of the algorithm.

6. Conclusion & Next steps

This deliverable presents a comprehensive solution that integrates an optimized

scheduling algorithm into the FASTEST project's LIMS, enabling a more agile and

effective approach to battery testing. The work achieved through the algorithm's

development, deployment, and integration represents significant advancements

beyond traditional scheduling methods. The innovations include a refined B&B

algorithm adapted for multithreaded environments, customized heuristics for task

prioritization, and seamless real-time interaction between the LIMS and DT

systems. These achievements have led to substantial gains in reducing idle time,

minimizing delays, and enhancing resource utilization across test benches.

The project has contributed new insights into the use of real-time data integration

in scheduling and demonstrated the feasibility of a hybrid approach that

incorporates both virtual and physical testing environments. Future steps will focus

on expanding the algorithm's capabilities to incorporate with the development of

WP2 (DoE) and WP5 (DT) in FASTEST project.

 D6.2: Scheduling Software Solution

Page 28 of 28

Date: 29/11/2024

7. Bibliography
Gurobi Optimization LLC, MIP. (2024). URL:

https://www.gurobi.com/resources/mixed-integer-programming-mip-a-

primer-on-the-basics/.

Gurobi Optimizer LLC, Reference Manual. (2024). Reference Manual. URL:

https://www.gurobi.com/documentation/current/refman/index.html.

MS Azure. (2024). Azure Functions. URL: https://learn.microsoft.com/en-

us/azure/azure-functions/.

Seelbach, H. (1975). Ablaufplanung. Bd. 8. Physica Paperback. Heidelberg:

Physica-Verlag.

Wang, T. (. (2018). Parallel machine scheduling with precedence constraints

(Diss.). Ecole centrale de Nantes.

