

Page 1 of 25 Date: 29/11/2024

EUROPEAN COMMISSION

HORIZON EUROPE PROGRAMME – TOPIC: HORIZON-CL5-2022-D2-01

FASTEST

Fast-track hybrid testing platform for the development of

battery systems

Deliverable D6.5: Real-time connection of

physical and virtual bench

Primary Author [Dr. Shuchen Liu]

Organization [FEV]

Date: [29.11.2024]

Doc. Version: [V1.0]

Co-funded by the European Union and UKRI under grant agreements N° 101103755 and 10078013, respectively. Views and

opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the

European Climate, Infrastructure and Environment Executive Agency (CINEA). Neither the European Union nor CINEA can be

held responsible for them

Ref. Ares(2024)8514389 - 29/11/2024

D6.5: Real-time connection of physical and virtual bench

Page 2 of 25

Date: 05/11/2024

Document Control Information

Settings Value

Work package:
6 – Development of hybrid testing
platform

Deliverable:
Real-time connection of physical and

virtual benches

Deliverable Type: R – Document, report

Dissemination Level: PU - Public

Due Date: 30.11.2024 (Month 18)

Actual Submission Date: 29.11.2024

Pages: < 24 >

Doc. Version: V1.0

GA Number: 101103755

Project Coordinator:
Bruno Rodrigues │ ABEE
(bruno.rodrigues@abeegroup.com)

Formal Reviewers

Name Organization Date

Naqeeb Tahasildar BMZ 10.11.2024

Laura Oca MGEP 25.11.2024

Document History

Version Date Description Author

0.9 30.10.2024 First Draft

Dr. Shuchen Liu (FEV)
Murat Bayraktar (FEV)

Bruno Rodrigues (ABEE)
Antonio Paolo Passaro (COMAU)

Walter Verdonck (FLANDERSMAKE)
Ahu Ece Hartavi(Surrey)

Mohammad Ghazali(Surrey)

Batuhan Cinar(Surrey)

1.0 29.11.2024
Initial

Submission

Dr. Shuchen Liu (FEV)

Murat Bayraktar (FEV)

D6.5: Real-time connection of physical and virtual bench

Page 3 of 25

Date: 05/11/2024

Bruno Rodrigues (ABEE)
Antonio Paolo Passaro (COMAU)

Walter Verdonck (FLANDERSMAKE)

Ahu Ece Hartavi(Surrey)
Mohammad Ghazali(Surrey)

Batuhan Cinar(Surrey)

D6.5: Real-time connection of physical and virtual bench

Page 4 of 25

Date: 05/11/2024

Project Abstract

Current methods to evaluate Li-ion batteries safety, performance, reliability and

lifetime represent a remarkable resource consumption for the overall battery R&D

process. The time or number of tests required, the expensive equipment and a

generalized trial-error approach are determining factors, together with a lack of

understanding of the complex multiscale and multi-physics phenomena in the

battery system. Besides, testing facilities are operated locally, meaning that data

management is handled directly in the facility, and that experimentation is done

on one test bench.

The FASTEST project aims develop and validate a fast-track testing platform able

to deliver a strategy based on Design of Experiments (DoE) and robust testing

results, combining multi-scale and multi-physics virtual and physical testing. This

will enable an accelerated battery system R&D and more reliable, safer and long-

lasting battery system designs. The project’s prototype of a fast-track hybrid

testing platform aims for a new holistic and interconnected approach. From a global

test facility perspective, additional services like smart DoE algorithms, virtualized

benches, and digital twin (DT) data are incorporated into the daily facility operation

to reach a new level of efficiency.

During the project, FASTEST consortium aims to develop up to TRL 6 the platform

and its components: the optimal DoE strategies according to three different use

cases (automotive, stationary, and off-road); two different cell chemistries, 3b and

4 solid-state (oxide polymer electrolyte); the development of a complete set of

physics-based and data driven models able to substitute physical characterization

experiments; and the overarching Digital Twin architecture managing the

information flows, and the TRL 6 proven and integrated prototype of the hybrid

testing platform.

D6.5: Real-time connection of physical and virtual bench

Page 5 of 25

Date: 05/11/2024

LIST OF ABBREVIATIONS, ACRONYMS AND DEFINITIONS

Acronym Name

AKS Azure Kubernetes Services

ACR Azure Container Services

POC Proof Of Concept

LIMS Laboratory Inventory Management System

MQTT Message Queuing Telemetry Transport

VPC Virtual Private Cloud

DT Digital Twin

DoE Design of Experiment

UUT Unit Under Test

UUID Unit under test ID

SFTP Secure File Transfer Protocol

IoT Internet of things

MQTT Message Queuing Telemetry Transport

UI User Interface

XiL X in the loop

IP Internet Protocol

LIST OF TABLES

Table 1 Workflow communication protocols .. 15
Table 2 Comparison of Communication Protocols ... 25

LIST OF FIGURES

Figure 1 LIMS Azure Infrastructure for connecting virtual and physical test

benches, DoE and Digital Twin ... 11
Figure 2 Communication workflow and interactions among FASTEST components

 .. 14
Figure 3. Physical Test Bench infrastructure ... 18
Figure 4. Proposed real-time test result JSON format 20
Figure 5. Successfully delivered example MQTT messages to DT 21
Figure 6. Successfully delivered example MQTT messages to the physical test

bench .. 22

D6.5: Real-time connection of physical and virtual bench

Page 6 of 25

Date: 05/11/2024

Table of Contents

1. EXECUTIVE SUMMARY ... 7

2. OBJECTIVES .. 8

3. INTRODUCTION ... 10

3.1 Purpose of conceptualizing virtual and physical tests 10

3.2 Problem description .. 10

3.3 Requirements .. 10

4. DESCRIPTION OF LIMS ARCHITECTURE ... 11

4.1 Description of Azure infrastructure .. 12

4.2 Choice of communication protocol .. 13

4.3 Description of component interactions and data format 14

4.4 Readiness of Connecting to DoE and Virtual Test Benches 16

5. CONNECTING LIMS TO DT, DOE AND PHYSICAL TEST BENCHES 17

5.1 Connecting DT to LIMS ... 17

5.2 Connecting Physical Test Benches to LIMS 17

6. RESULTS ... 19

6.1 Connecting to DT ... 19

6.1.1 Test Description ... 19

6.1.2 Test Results and Evaluation ... 19

6.2 Connecting to Physical Test Bench .. 21

6.2.1 Test Description ... 21

6.2.2 Test Results and Evaluation ... 21

7. CONCLUSION & NEXT STEPS .. 23

8. BIBLIOGRAPHY .. 24

APPENDIX A. Comparison of Communication Protocols 25

D6.5: Real-time connection of physical and virtual bench

Page 7 of 25

Date: 05/11/2024

1. EXECUTIVE SUMMARY

Deliverable D6.5 focuses on the conceptual work, implementation, stabilisation,

and testing of an “as fast as possible” connection between physical and virtual test

benches in the cloud. The technical requirements needed to achieve this are

analysed and listed in this deliverable in accordance with the proposed cloud

solution. This deliverable presents the implementation results of the proof-of-

concept (POC) connection with the partners, laying the groundwork for the next

steps in integrating both virtual and physical test benches with the developed

components.

In the current testing facility landscape, operations are often managed locally, with

data management and storage handled directly within the facility. The Laboratory

Inventory Management System (LIMS) is introduced as a central component of the

FASTEST project to streamline the management of testing facilities. The efficient

use of available resources is highlighted as crucial for overall efficiency

improvement.

In this deliverable, the communication workflow between LIMS, DoE and DT is

described. LIMS serves as the main communication hub that connects both the

physical and virtual test benches with DoE and DT. This communication is done

throughMessage Queuing Telemetry Transport (MQTT) for its advantages on

Internet of things (IoT) use cases. Two of the main advantages are its light weight

and high reliability on message delivery. The deployed MQTT broker mainly uses

two types of message delivery, one-time single messages for control purposes and

continuous real-time messages for test observation purposes. The MQTT broker is

deployed on a cluster in Azure Kubernetes services for high availability purposes.

The broker is reachable via an external service inside the cluster where partners

from DoE and DT can connect to subscribe/publish messages through this services

Internet Protocol (IP). The communication loop starts from LIMS user interface

(UI) where users choose a test type, preferred test date and targeted battery type.

LIMS acts as a publisher and a subscriber to respectively propagate this

information and receive the response from DT and DoE accordingly. To facilitate a

streamlined communication between the broker from FEV and the broker from DT,

broker bridging takes place. This improves the resource management where each

broker focuses on specific clients. It also allows cross-network communication

where each broker is deployed in its own network and message exchange is

required.

With the described implementation, messages can be exchanged securely between

LIMS, DT, DoE and the test benches in the form of commands or real-time

telemetry.

D6.5: Real-time connection of physical and virtual bench

Page 8 of 25

Date: 05/11/2024

2. OBJECTIVES

The FASTEST project aims to develop and validate a fast-track testing platform

able to deliver a strategy based on Design of Experiments (DoE) and robust testing

results, combining multi-scale and multi-physics virtual and physical testing. This

will enable an accelerated battery system R&D and more reliable, safer, and long-

lasting battery system designs. The project’s prototype of a fast-track hybrid

testing platform aims for a new holistic and interconnected approach. From a global

test facility perspective, additional services like smart DoE algorithms, virtualised

benches, and DT data are incorporated into the daily facility operation to reach a

new level of efficiency.

During the project, FASTEST consortium aims to develop up to TRL6 the platform

and its components: the optimal DoE strategies according to three different use

cases (automotive, stationary, and off-road); the development of a complete set

of physics-based and data-driven models are able to substitute physical

characterisation experiments; the overarching Digital Twin (DT) architecture

managing the information flows, and the TRL6 proven and integrated prototype of

the hybrid testing platform. The platform, aimed to become a flexible tool for any

chemistry and application. One of which is, including the predictive maintenance

algorithm, developed in WP3, which aims to estimate the remaining useful life

(RUL) of a battery, taking into account various negative test scenarios. These

scenarios are categorized into three main sections: mechanical, electrical, and

thermal abuse. Specific conditions include battery casing penetration, internal and

external short circuits, state-of-charge (SoC) calibration errors leading to rapid

degradation from overcharge or over discharge, and thermal system failures

resulting in internal and external heat exposure. By simulating these extreme

operating conditions, the tests ensure that the algorithm can effectively handle

rare battery failures. Based on the outcomes of these negative case tests, the

system will determine whether a test should be conducted on the virtual test bench

or the physical test bench, as part of WP2 and incorporation with LIMS.

Purpose of this work task T6.5 is the concept work, implementation, stabilization,

testing and real-life validation of an “as fast as possible”-connection between

physical and virtual test bench in the cloud. Therefore, first matching and feasible

technologies must be investigated. It will be determined which possibilities are

existing to perform fast continuous data transfer between virtual and real bench.

After identification of matching base technology, a respective module design and

prototype implementation will follow. Subsequently to a POC connection within a

selected example scenario, the final module will be implemented and tested. On

some use-cases hard real-time requirements will be necessary. In that case it

might be necessary to download the models into the test centre IT infrastructure

to overcome the shortcoming of internet communication connection bandwidth and

latency (more comparable to an X-in-the-loop (XiL)-like approach). Finally, the

concepts and module’s limitations need to be carefully investigated and

documented transparently.

The objectives of this work task are summarized as follows:

D6.5: Real-time connection of physical and virtual bench

Page 9 of 25

Date: 05/11/2024

• Choosing the required cloud services to match the technical requirements

• Designing an efficient and secure cloud infrastructure setup

• Development and deployment of LIMS software to serve as the central

communication hub between the project’s components

• Establish real-time communication between LIMS and the relative partners

from DT, DoE, and test benches

D6.5: Real-time connection of physical and virtual bench

Page 10 of 25

Date: 05/11/2024

3. INTRODUCTION

The following chapter focuses on laying the foundation of the project from a

technical overview. First, the purpose of the test benches is explained, followed up

by the problem statement, technical requirements and the proposed solution in

the form of a cloud architecture design. Detailed descriptions on the deployment

method of each service used in our architecture supports the context mentioned.

3.1 Purpose of conceptualizing virtual and physical tests
The purpose of conceptualizing the virtual and physical tests is to establish an

understanding of how these tests interact with the proposed solution’s

components. After the design phase comes the implementation phase where the

concept is tested and iteratively enhanced.

3.2 Problem description
In this working package, a central communication hub between the test benches

(physical/virtual) and the other FASTEST system components (DoE/DT) is to be

developed. The software interaction with DT and DoE is summarized as follows. It

is meant to fetch the optimized experiment parameters from the DoE and fetch

the correct model file from the DT model registry and forward it to the virtual test

bench. The communication needs to be in a near real-time basis due to the nature

of the tests being run on both physical and virtual benches. Also, the introduced

message delay is of an exceptional importance due to the usage of an optimization

algorithm that chooses the best suiting timing of each test on each bench. This

software is called LIMS and the communication technology it uses is called MQTT.

3.3 Requirements

The described problem requires the followings:

• Maximum communication delay tolerance in the scope of seconds

• Logging communication and test results in a scalable database

• Secure deployment and communication between the database and LIMS

• Scalable MQTT broker deployment, as the expected total clients may

increase according to partners, currently total of 5 clients in total are to be

expected.

• Portable deployment regardless of the chosen cloud provider

• QoS level 2 to ensure high reliability of receiving messages exactly as

planned

D6.5: Real-time connection of physical and virtual bench

Page 11 of 25

Date: 05/11/2024

4. DESCRIPTION OF LIMS ARCHITECTURE

In Figure 1, a concept of FEV cloud infrastructure is introduced, which is deployed

in Microsoft Azure and connected to the digital twin and physical test benches. FEV

Azure infrastructure provide the interface for the user to access the FASTEST

system and operation platform for many FASTEST components, e.g., LIMS

including the scheduling algorithm, DoE and virtual test benches.

Figure 1 LIMS Azure Infrastructure for connecting virtual and physical test

benches, DoE and Digital Twin

Our Virtual Private Cloud (VPC) will be responsible for securely deploying four main

applications namely (LIMS / MQTT broker / Scheduling algorithm / virtual test

benches). Each of these applications is served using its appropriate Azure service.

Additionally, complimentary services like the SQL database and blob storage take

place in our architecture to ensure that the project artifacts and data are logged

and saved securely.

0. Users choosing test type, preferred date and unit under test (UUT)

1. Application gateway securing and organizing the user interaction with the

LIMS UI

2. Azure App service (type: web app – Linux docker container) for hosting LIMS

D6.5: Real-time connection of physical and virtual bench

Page 12 of 25

Date: 05/11/2024

3. Azure SQL database (general purpose, serverless) for saving test related logs

4. Azure blob storage for saving artifacts (ex: test models)

5. Scheduler on Azure Functions for running the scheduling algorithm (Gurobi)

6. DoE on Azure Functions for running the DoE algorithm.

7. IAM Access Control for defining role-based access to users/services when

needed

8. Azure Kubernetes Services for deploying a cluster that hosts the MQTT

broker.

9. Azure container app for hosting the virtual test bench in the form of a co-

simulation docker container.

10. Digital Twin service to represent the simulated UUT, hosted and deployed

by partners own VPC.

11. Physical test bench deployed and maintained by partners to run tests on

UUT and publish metrics to LIMS through the MQTT broker.

4.1 Description of Azure infrastructure

Starting with LIMS, we decided to use Azure App Service (Microsoft, App Service -

Build and Host Web Pages, 2024) to host it as a web application that is published

as a Linux docker container for portability purposes. The accessibility is controlled

by an application gateway (Microsoft, Application Gateway, 2024) and optionally

whitelisting the public IPs of users when needed. The application is connected to a

database instance hosted on Azure SQL Database service (Microsoft, Azure SQL

Database, 2024). This database instance allows only specific set of IPs for security

purposes.

As for our scheduling algorithm, it is deployed on Azure Functions service for

mainly two reasons. Easy integration with LIMS and short runtime duration. Azure

Functions service allows LIMS to trigger the scheduling logic behind it using HTTP

requests. Also, Azure functions service (Microsoft, Azure Functions, 2024) is best

used for running code snippets that require no longer than 10 minutes to finish,

which is the case in our scheduler.

Regarding the MQTT broker, we decided to deploy it on Azure Kubernetes Service

using HiveMQ’s official helm charts. Deploying the broker as a pod inside a

Kubernetes cluster adds robustness, scalability and high availability to the service

(HiveMQ, 2024). Technical aspects of the responsible pod and the number of the

broker replicas can be altered easily. Due to the observed usage, the cluster uses

one node. Additionally, it’s worth noting that helm charts allow faster deployment

because they contain the broker and all its required services in one chart.

Lastly, the virtual test benches are deployed in the form of a docker container

running a co-simulation software. This docker container is hosted on Azure

Container App/s (Microsoft, Azure Container Apps, 2024). A specific port is setup

to allow real-time metrics exchange with clients such as DT and our Azure SQL

database. Just before the start of each virtual test, the respective model is fetched

from our blob storage which in turn receives these models from our partner in at

D6.5: Real-time connection of physical and virtual bench

Page 13 of 25

Date: 05/11/2024

the DT side. As for the physical test benches, the same metrics will be pushed from

it to the respective clients through our broker, but the actual deployment of these

test benches remains under the responsibility of the partner’s industrial plant.

4.2 Choice of communication protocol

A study regarding the communication protocols in IoT systems was conducted

based on the research of (Sidna, Amine, Abdallah, & El Alami, 2020). We took

different factors into considerations such as package limit (MB), bandwidth

consumption, latency, security. The detailed outcomes are listed in Table 2 in

Appendix A.

Based on the features of the communication protocols in Table 2, the most suitable

ones for the project FASTEST, turn out to be MQTT and CoAP. A further detailed

comparison of the two protocols based on the needs of the project gives MQTT as

the right protocol to use in this project because:

• MQTT is a messaging protocol that works over TCP, while CoAP is a document

transfer protocol that works over UDP. This means that the connections via

TCP between the hosts are more reliable and the data transfer is

guaranteed.

• MQTT has a slower transmit cycle and lower communication delay than

CoAP, but is simpler to implement.

• MQTT is not RESTful, while CoAP is RESTful and can interface with HTTP

systems. However, passing the firewalls can be problematic for CoAP

because of the use of UDP. On the other hand, this is not an issue for MQTT

since it uses WebSockets.

• MQTT works on flexible topic subscriptions and allows easy addition of data

consumers and producers, while CoAP has a stable resource discovery

mechanism.

• MQTT is best suited for distributing live data to multiple clients, while CoAP

is best suited for transferring state information between client and server.

When it comes to exchanging larger content (ex: test models) between connected

clients and our infrastructure, we need to use a different communication protocol

to accommodate this type of data. After research on the available protocols, we

decided to go with the SFTP protocol. SFTP stands for secure file transfer protocol.

It offers several advantages particularly for secure and reliable data transfer. Below

are the main advantageous aspects of this protocol:

• SFTP provides encryption of both the data in transit and the authentication

process, ensuring that sensitive IoT data is not exposed to unauthorized

access.

• SFTP operates over a single port (z2) so maintaining the firewall rules on

this type of communication is relatively easy.

• It can be used to send large files or batches of data which is helpful in IoT

use cases such as ours especially in periodic uploads.

D6.5: Real-time connection of physical and virtual bench

Page 14 of 25

Date: 05/11/2024

• The protocol provides authentication capabilities using public keys when

needed.

During the future phase of integrating model data within our working package,

integrating SFTP client/s to Azure blob storage will be implemented seamlessly due

to the Azure support to this communication protocol (Microsoft, Enable or disable

SSH File Transfer Protocol (SFTP) support in Azure Blob Storage, 2024). By simply

enabling SFTP access and authorizing access to the client/s, we can start

exchanging data across networks.

4.3 Description of component interactions and data format

Figure 2 Communication workflow and interactions among FASTEST components

In Figure 2, a workflow diagram explains the interaction between different services

hosted by all the partners that govern the goals of working package 6. The flow

starts with the user choosing from the LIMS UI a specific test type, the unit under

test and the preferred time of the test to be executed. LIMS will forward this data

to the partners at DT that will choose the appropriate simulation models and the

required procedures. LIMS will then be responsible for pushing these procedures

to DoE that will calculate the best procedures using their own approximation

algorithms. LIMS then forwards the results from DoE to the test scheduling

algorithm that recommends when and which test bench is to be chosen right before

executing the test. Lastly, LIMS will use these results to trigger the tests on both

the virtual and physical test benches. As the virtual test benches need a model to

run the test, DT will push the previously chosen model to the co-simulation

software containing the virtual test bench. After the test runs on both physical and

virtual test benches, test metrics are fed back to the DoE in order to determine

model maturity by comparing the results from both benches.

D6.5: Real-time connection of physical and virtual bench

Page 15 of 25

Date: 05/11/2024

Table 1 Workflow communication protocols
Nr. From Description of

interaction
To Communication

protocol
Data
type

1 User Choose the UUT
via

 HTTP/S JSON

2 LIMS – User
interface

Send the UUT
and preschedule

LIMS-Data
management

Database
connection

SQL

3 LIMS – Data
management

Forward the
prescheduled
UUT to

DT - Test
request handler

MQTT JSON

4 DT- Test request
handler

Forward the
prescheduled
UUT to

DT – Model
management

MQTT

JSON

5 DT – Model
management

Send the
selected model,
procedures and

UUT to

DT – Test
request handler

MQTT

JSON

6 DT – Test
request handler

Forward the
selected model,

procedures and
UUT to

LIMS – Data
management

MQTT JSON

7 LIMS – Data
management

Forward the
selected model,
procedures and
UUT to

DoE Database
connection

SQL

8 DoE Send optimized

test procedures
to

LIMS – Data

management

Database

connection

SQL

9 LIMS – Data
management

Forward
optimized test

procedure to

LIMS – Test
scheduling

Database
connection

SQL

10 LIMS – test
scheduling

Send the task
scheduling to

LIMS – Data
management

Database
connection

SQL

11a LIMS – Data

management

distributes the

test schedule to
corresponding

DT test request

handler

MQTT JSON

11b LIMS – Data
management

distributes the
test schedule to
corresponding

Physical test
bench

MQTT JSON

12a LIMS – Data
management

distributes the
test schedule to

Virtual test
bench

MQTT JSON

13a DT – Test

request handler

Initialize the

model fetching
in

DT model

exchange
interface

MQTT JSON

14a DT Model
exchange

interface

Send the fetched
model files to

DT Test request
handler

SFTP

FMU or
others

15a DT Test request
handler

Forward the
fetched model
files to

Virtual test
bench

SFTP FMU or
others

16a Virtual test
bench

Send the real
time test result
to

LIMS – Data
management

MQTT JSON

16b Physical test
bench

Send the real
time result to

LIMS – Data
management

MQTT JSON

D6.5: Real-time connection of physical and virtual bench

Page 16 of 25

Date: 05/11/2024

17a

LIMS Data
management

Forward the
result to

DoE Database
connection

SQL

17b LIMS Data
management

Pushes real time
test results to

DT data collector MQTT JSON

18 DoE Forward

test/model
related results
after
comparison

LIMS – Data

management

Database

connection

SQL

19 LIMS – Data
management

Forward
test/model

related results

LIMS – UI Database
connection

SQL

4.4 Readiness of Connecting to DoE and Virtual Test Benches

The virtual test bench is going to be hosted on Azure Container App due to the

encapsulation of the co-simulation software in a docker container. This allows us

to open ports specifically for communication between the co-simulation software

and other entities such as the Azure SQL Database through our MQTT broker. Once

the real-time metrics are saved under our database, LIMS data management will

be able to publish these metrics to partners from DT.

As for the DoE, the WP2 partners will be responsible for preparing the algorithm

and specifying the expected input/output formats for handing it over to us for

deployment. Due to the expected short runtime cycles and the necessity of being

triggered easily by LIMS through HTTP calls, Azure Functions is the chosen medium

of deployment for DoE. We will be able to assign the appropriate development

environment, variables and libraries inside the function according to the

programming language used to develop DoE. Using Azure functions will help us

connect the processes between LIMS and DoE with minimal deployment delays,

real-time and secure communication within our virtual network.

D6.5: Real-time connection of physical and virtual bench

Page 17 of 25

Date: 05/11/2024

5. CONNECTING LIMS TO DT, DOE AND PHYSICAL

TEST BENCHES

5.1 Connecting DT to LIMS

The Digital Twin platform is hosted on a dedicated Azure cloud environment and is

comprised of multiple components. Each component operates as a microservice,

running within a Docker container deployed on a Kubernetes cluster.

Communication between the Digital Twin (DT) platform and the Laboratory

Information Management System (LIMS) relies on the MQTT protocol. Specifically,

this connection is established through an MQTT bridge between the HiveMQ broker

(part of the LIMS platform) and the RabbitMQ broker deployed on the Kubernetes

cluster within the Digital Twin platform. This bridge facilitates the exchange of

MQTT messages on designated topics between components of the LIMS and DT,

enabling the transfer of new test requests, model information, and test results.

Bridge configuration is managed on the HiveMQ broker side and requires the

HiveMQ Enterprise Bridge Extension. This extension enables HiveMQ to bridge with

other MQTT brokers to exchange messages, supporting bi-directional topic

mapping and configurable topic filters to direct messages to specific destination

topics on other MQTT brokers.

5.2 Connecting Physical Test Benches to LIMS

The connection between LIMS and a physical test bench provided by Flanders Make

was established and tested. The dedicated battery testing software from the

supplier controls and monitors the physical battery testing hardware. This software

implements the different test procedures. All measured data is stored in a (local)

SQL database. This way the test bench could be operated standalone. However,

we will integrate the setup in a network infrastructure and control the test bench

software remotely. Therefore, we will add a test coordinator software which

communicates to the test bench software using a TCP interface. This allows

changing the configuration of the test bench and control the execution of the tests.

This coordinator software will also feature an MQTT client that will receive the test

request from the remote LIMS Data Management and send the real-time data at

regular time intervals to the MQTT broker in the LIMS Data Management

infrastructure. This coordinator software will be deployed on a virtual PC or docker

container.

D6.5: Real-time connection of physical and virtual bench

Page 18 of 25

Date: 05/11/2024

Figure 3. Physical Test Bench infrastructure

D6.5: Real-time connection of physical and virtual bench

Page 19 of 25

Date: 05/11/2024

6. RESULTS
This chapter focuses on representing the results obtained after experimenting the

communication protocol (MQTT) between LIMS, DT and the physical test bench.

Each test results are organized by a table highlighting the contributed partners,

system components, date and status.

6.1 Connecting to DT
This test was implemented to setup the communication between DT and LIMS as

this communication bus is important for successful test cycles. During these cycles,

interaction between these two components (DT and LIMS) includes sharing

important messages such as the scheduled test type and real-time test metrics.

6.1.1 Test Description

Partners System

Components

Date, Place Status

FEV, COMAU, INEGI LIMS, DT, DoE 07.10.2024.

Online (Azure)

Passed

Objectives of the Test

• Test the communication between LIMS, DT and DoE
• Assure message type and format.

Test Description

Message publishing was tested from LIMS to the Digital twin where the agreed

message structure was sent as a JSON. Broker bridging capability was tested
where the broker from FEV side acts as a bridge and forwards messages

automatically to a preassigned topic towards the broker from the digital twin
side. Messages were sent successfully on a real-time basis with no noticeable
delays.

Open Issues

• None

6.1.2 Test Results and Evaluation

The communication test between DT partners and FEV was established successfully

where the MQTT broker (using HiveMQ) at FEV served as a bridge to the MQTT

broker (using RabbitMQ) at COMAU (DT partners). The message payload used

during the test was constructed of a JSON containing the keys and values shown

in Figure 4. The values are experimental, but they reflect actual data that we

foresee to be used in the future:

D6.5: Real-time connection of physical and virtual bench

Page 20 of 25

Date: 05/11/2024

Figure 4. Proposed real-time test result JSON format

Figure 5 represents a screenshot of the terminal from our partner COMAU taken

during our initial communication test. Following the defined workflow, the first step

requires the user to select specific parameters: the test type, test name, UUID,

UUT and the preferred test date. To simulate this, a user selects this information

in the LIMS UI, then the information is automatically combined into a JSON file

and sent to DT. During the same test session, we successfully tested transmitting

test results in JSON format as well. This step simulates the process by which LIMS

receives results from the physical test bench and forwards it to DT for analysis and

visualization. The printed timestamps on the terminal confirm that the messages

were transmitted to DT without errors, reflecting reliable message exchange.

Broker bridging was implemented, allowing any client sending data to FEV broker

on a specific MQTT topic to have that data automatically forwarded (bridged) to

the DT broker. To enable seamless communication, broker bridging was

D6.5: Real-time connection of physical and virtual bench

Page 21 of 25

Date: 05/11/2024

implemented. In this setup, any client publishing data to the FEV broker on a

designated MQTT topic automatically has that data bridged to the DT broker,

facilitating synchronized and efficient data flow across systems.

Figure 5. Successfully delivered example MQTT messages to DT

6.2 Connecting to Physical Test Bench

6.2.1 Test Description

Partners System
Components

Date, Place Status

FEV, Flanders Make LIMS, Physical
test bench

22.10.2024.
Online (Azure)

Passed

Objectives of the Test

• Test the communication between LIMS and the physical test bench
• Assure message content and format.

Test Description

Publishing test metrics messages between LIMS and the physical test bench was

implemented successfully. Both subscribing and publishing worked on real-time
basis with no noticeable delays. interval (messages per minute) of the metrics
publishing from the physical bench to LIMS is to be decided on a later stage of

the project.

Open Issues

• None

6.2.2 Test Results and Evaluation

LIMS successfully implemented a communication test with the partners from the

physical test bench department (Flanders Make) by sending/receiving example test

related data as shown below. The timestamp of the message indicates successful

D6.5: Real-time connection of physical and virtual bench

Page 22 of 25

Date: 05/11/2024

message receiving. JSON format was the standard used between all partners

during the tests as it provided flexibility in defining keys/values and easy

serialization/deserialization using the programming languages of all partners (ex:

Python, c, c#, etc).

Figure 6. Successfully delivered example MQTT messages to the physical test bench

D6.5: Real-time connection of physical and virtual bench

Page 23 of 25

Date: 05/11/2024

7. CONCLUSION & NEXT STEPS

This deliverable emphasizes the technical aspect of connecting both the physical

and virtual test benches and messages exchange between them and DT/DoE

through LIMS data management layer. All communication between the respective

parties is systematically designed, covered and explained in the form of a workflow

that was agreed upon through iterative enhancements to serve as a common

ground truth for all partners. Moreover, this work showcases the deployment

approaches followed by FEV and the partners (FM, COMAU, INEGI, ABEE) during

the development of LIMS & virtual test bench, DoE, physical test bench and DT

respectively. The architecture design conducted by FEV to deploy LIMS, the

scheduling algorithm, DoE and the MQTT broker was discussed. Then, message

exchange capabilities were successfully tested between LIMS, DT and the physical

test bench and this resulted in real-time performance with no noticeable delays.

At the end, readiness of connecting DoE to the virtual test bench was proven to be

true, paving the way to integrate them and prepare for validation in upcoming

work packages.

D6.5: Real-time connection of physical and virtual bench

Page 24 of 25

Date: 05/11/2024

8. BIBLIOGRAPHY
HiveMQ. (2024, 10 30). www.hivemq.com. Retrieved from www.hivemq.com:

https://www.hivemq.com/solutions/the-best-mqtt-broker-for-azure/

Microsoft. (2024, 10 30). App Service - Build and Host Web Pages. Retrieved from

Microsoft Azure: https://azure.microsoft.com/en-us/products/app-service

Microsoft. (2024, 10 30). Application Gateway. Retrieved from Microsoft Azure:

https://azure.microsoft.com/en-us/products/application-

gateway/?msockid=333b0623c62160732cc912b7c75961f7

Microsoft. (2024, 10 30). Azure Container Apps. Retrieved from Microsoft Azure:

https://azure.microsoft.com/de-de/products/container-

apps/?msockid=333b0623c62160732cc912b7c75961f7

Microsoft. (2024, 10 30). Azure Functions. Retrieved from Microsoft Azure:

https://azure.microsoft.com/en-

us/products/functions/?msockid=333b0623c62160732cc912b7c75961f7

Microsoft. (2024, 10 30). Azure SQL Database. Retrieved from Microsoft Azure

cloud: https://azure.microsoft.com/en-us/products/azure-

sql/database/?msockid=333b0623c62160732cc912b7c75961f7#Features

Microsoft. (2024, 10 30). Enable or disable SSH File Transfer Protocol (SFTP)

support in Azure Blob Storage. Retrieved from Microsoft Azure:

https://learn.microsoft.com/en-us/azure/storage/blobs/secure-file-

transfer-protocol-support-how-to?tabs=azure-portal

Sidna, J., Amine, B., Abdallah, N., & El Alami, H. (2020). Analysis and evaluation

of communication Protocols for IoT Applications. Proceedings of the 13th

international conference on intelligent systems: theories and applications,

(pp. 1-6).

Page 25 of 25 Date: 29/11/2024

APPENDIX A. Comparison of Communication Protocols
Table 2 Comparison of Communication Protocols

Characteristic MQTT HTTP DDS XMPP AMQP coAP

Architecture Client/broker Client/server Brokerless Client/server Client/broker or

client/server

Request/response or

publish/subscribe

QoS (Quality of Service) QoS(0/1/2) Limited 23 policies No support Settle/unsettle format Confirmable/non-confirmable

Security TLS/SSL Has the lowest level TLS/SSL TLS/SSL, DTLS TLS/SSL TLS/SSL, IPSec, SASL

Strongest security

DTLS, IPSec guarantee

authentication, integrity and

encryption

Latency MQTT has lower latency than HTTP involves largest latency, HTTP has

highest latency than all others

Low latency Low latency AMQP has lower latency

than MQTT

CoAP has lower latency than all

others

Bandwidth consumption Consumes high bandwidth Largest bandwidth consumption Low Low High bandwidth

consumption

Lowest bandwidth consumption

Applications Home automation, Enterprise level

applications

Web Medical Imaging, Military Systems Instant Messaging, Group

chat, Gaming, Vehicle

Tracking

Business Messaging,

Banking Industry

Smart homes, Smart grid, Building

Automation

Package limit (MB) 256 MB/Message No limit by specification.

Limited by server and client.

IE: 2GB

Firefox: 2GB

Chrome: 4 GB

Opera: 4 GB

UDPv4 - 64KB (larger messages are

fragmented)

No limit by specification.

Limited by the server.

Suggested minimum

10KB4

 Limit of underlying transport - RFC

7252 suggests 1152 bytes for UDP if

nothing is known about the target

Data throughput (256B Messages)

MQTT (QoS 1) - 1234 msg/s 3

MQTT (QoS 0) - 18416 msg/s 3

 (256B Messages)

8729 msg/s 3

Standards OASIS, Eclipse Foundations IETF and W3C OMG IETF OASIS, ISO/IEC IETF, Eclipse Foundation

Encoding format Binary Text Binary Text Binary Binary

Connectivity One-to-one, one-to-many, and many-to-

many

One-to-One Peer-to-peer communication, one-to-

one, one-to-many, many-to-many, and

many-to-one

One-to-One Point-to-point One-to-one (natively), many-to-many

communications (not natively but with

extensions)

Energy consumption MQTT was more energy efficient Requires highest power/energy

consumed by HTTP was much

larger than with MQTT

- Increased power

consumption

requires slightly higher

power

CoAP is more efficient in terms of

energy

Transport protocol TCP (MQTT-SN can use UDP)

Transport via Websockets possible

(broker dependent feature)

TCP UDP TCP TCP, SCTP UDP

