
HAL Id: hal-05081856
https://utc.hal.science/hal-05081856v1

Submitted on 23 May 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Developing a Model-in-the-Loop Testbench for Battery
Management Systems: Advancing Test Methodologies

for State-of-X Estimation
I. Sanz-Gorrachategui, A. Barrutia, A. Martín, X. Arraztoa-Lazkanotegi, D.

Marcos, P. Onaindia

To cite this version:
I. Sanz-Gorrachategui, A. Barrutia, A. Martín, X. Arraztoa-Lazkanotegi, D. Marcos, et al.. Developing
a Model-in-the-Loop Testbench for Battery Management Systems: Advancing Test Methodologies for
State-of-X Estimation. The 26th European Conference on Power Electronics and Applications, GDR
SEEDS France & EPE Association, Mar 2025, Paris, France. �10.34746/epe2025-0070�. �hal-05081856�

https://utc.hal.science/hal-05081856v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Developing a Model-in-the-Loop Testbench for Battery Management

Systems: Advancing Test Methodologies for State-of-X Estimation

I. Sanz-Gorrachategui, A. Barrutia, A. Martín, X. Arraztoa-Lazkanotegi, D. Marcos, P.

Onaindia

IKERLAN

José María Arizmendiarrieta Pasealekua, 2, 20500

Arrasate-Mondragón, Spain

943 71 24 00

{isanz, abarrutia, amartin, xarraztoa, dmarcos, ponaindia}@ikerlan.es

Acknowledgements

The research presented throughout this paper has

received funding from the European Community

under the FASTEST project (grant agreement N°

101103755)

Keywords

«Battery Management Systems (BMS)»,

«Hardware-in-the-Loop (HIL)»,

«State of Charge»,

«Virtual prototyping»,

«Real-time simulation».

Abstract

Lithium-ion battery systems require robust BMS

for safety and reliability. Extensive BMS testing

presents challenges like safety risks, long testing

times, and variability. To address these issues and

expedite development, a testing methodology

based on X-in-the-Loop (XiL) paradigms is

proposed. This methodology ensures

comprehensive validation and cost reduction.

Using MathWorks Simulink and Simscape

Batteries, a virtual testbench is developed to

model both the BMS and the battery pack. The

BMS includes virtualized master and slave units,

emulating sensor behavior and SoC estimation

algorithms. A virtual battery cycler enables

specific current profile testing. As case study, this

setup benchmarks SoC estimation algorithms at

MiL and SiL levels, with potential HiL expansion

for real BMS device validation, enhancing testing

capabilities and automating procedures for safer,

faster BMS development.

Introduction

Lithium-ion battery systems have become

ubiquitous in modern life, with applications

ranging from small-scale electronic devices to

mid-scale automotive systems and large-scale

stationary applications. To ensure the safe

operation of these battery packs, Battery

Management Systems (BMS) are essential. The

primary functions of BMS include cell

monitoring (current, voltage, and temperature),

cell balancing, State-of-X estimation (SoX),

charge and discharge control, and alarm

triggering [1].

Due to their crucial role in the safety and

reliability of battery packs, extensive testing of

BMS is required to prevent operational failures.

Existing methods for assessing BMS

functionality significantly contribute to the time-

to-market, given the cost of testing infrastructure,

the number of required tests, and the duration of

each test [2]. Furthermore, directly testing BMS

on real battery packs presents issues such as

safety concerns—since the BMS is still a

prototype and may malfunction—long testing

times—due to the need for charging and

discharging real batteries—and repeatability

issues, as the cell state may vary from test to test.

The V-model design methodology (Fig. 1) offers

a systematic approach to overcome these

challenges. This methodology integrates testing

throughout the development process, associating

each phase of design with a corresponding phase

of testing.

Fig. 1. V model design methodology.

By following the V-model, all requirements are

verified and validated at each stage, ensuring

thorough validation of the design and reducing

the cost and impact of potential changes during

the hardware validation phase. This methodology

can be effectively applied to BMS development

[3 – 4]. After the requirements and specifications,

a high level, fully virtual model containing the

BMS and the battery pack (Model-in-the-Loop or

MiL) is developed. MiL testing allows for the

creation and simulation of virtual models

representing different system components, such

as the whole battery pack, external inputs, and the

BMS main algorithms. By simulating the whole

system at this stage, it is possible to address early

flaws in the design before building hardware

prototypes, reducing the risk of expensive errors

and delays further into the project.

From this starting point, different virtual blocks

can be progressively replaced with real software

implementations [5] (Software-in-the-Loop or

SiL). This allows for more detailed testing of

software algorithms and control strategies in a

controlled environment. SiL testing enables

developers to check the system behavior under

multiple but controlled conditions, allowing for

algorithm fine tuning and ensuring their

performance before deploying them into

hardware prototypes.

Finally, validation plans can be executed using

the real BMS alongside a virtual battery pack in a

Hardware-in-the-Loop (HiL) setup. This

approach combines virtual models with physical

components (e.g. testing the actual BMS but

emulating the battery and current sensor in the

HiL system). This approach creates a realistic and

repeatable testing environment where the actual

BMS interacts with virtual batteries in real time.

HiL testing allows developers to evaluate system

performance under consistent operating

conditions, including factors such as electrical

noise or thermal effects. By validating system

behavior in a HiL setup, developers can ensure

the BMS operation in real-world applications [6 –

7]. Achieving this requires the design and

implementation of dedicated HiL systems [8 –

10], capable of replicating the behavior of virtual

cell models and generating the electrical signals

for the BMS. Alternatively, off-the-shelf

solutions from manufacturers provide seamless

integration with simulation environments such as

Simulink and can be employed to streamline this

process.

This step-by-step validation approach offers

capabilities beyond physical testbenches, such as

integrating auto-generated code into the BMS or

performing test coverage analysis of the virtual

model. Coverage is critical for functions such as

alarm triggering, where a malfunction could make

the system hazardous. For SoX estimation

algorithms, it supports comparative analysis

among different algorithm families. Furthermore,

when coupled with code-generation tools, the

development cycle of such elements is

accelerated.

As new applications and chemistries emerge,

BMS must be designed with shorter development

times to reduce time-to-market. This increases the

need for automating testing procedures in a fast

but reliable manner. To this end, the FASTEST

project aims to accelerate battery system R&D

and enable more reliable, safer, and longer-lasting

battery system designs by developing a fast-track

testing platform. This platform uses a strategy

based on Design of Experiments (DoE),

combining physical and virtual testing. Virtual

testing is crucial for ensuring that safety and

reliability requirements are met according to

various standards (such as ISO 26262 and IEC

61508). Even when standards require physical

tests, virtualizing these tests allows for prior

Digital Twin (DT) validation, significantly

reducing time and material costs and minimizing

potential hazards during physical testing.

This paper presents a method for developing a

BMS testing testbench using tools such as

MathWorks Simulink and Simscape Batteries. As

a case study, the testbench is used for

benchmarking State-of-Charge (SoC) estimation

algorithms at MiL and SiL levels of

implementation. The simulation testbench can be

easily expanded towards HiL stages via

integration with Speedgoat HiL, allowing for the

validation of real BMS devices under desired test

conditions.

Testbench Description

Testbench Structure

The virtual testbench comprises of two main

components: the BMS and the battery pack. The

BMS has been virtualized following the

architecture described in the subsequent section.

It includes the BMS slaves, connected to the

battery pack, and the BMS master that

coordinates them. On the other hand, the battery

pack is modeled after the real battery pack

required for the application and remains

consistent throughout the MiL – SiL – HiL.

Battery Management System

General BMS architecture

A BMS typically consists of a central unit known

as the master and multiple distributed units

referred to as slaves (see Fig. 2) [2]. The slaves

are directly connected to individual cells and are

responsible for tasks such as measuring cell

voltage and temperature, as well as balancing the

cells. The number of slaves required varies based

on the scale of the battery pack, as each slave is

connected to a limited number of cells, typically

fewer than 20. Conversely, the master unit

maintains continuous communication with the

slaves, receiving measurements (usually via an

isolated daisy-chain protocol) monitoring battery

pack current, conducting SoX state estimations,

checking cell balance, and triggering warning and

alarm systems as necessary.

Fig. 2. BMS architecture.

Slave implementation

Each BMS slave monitors cell voltage and

temperature. Additionally, the current is shared

among all the cells and is provided to the BMS

master by an external sensor in the powerbox. The

implementation of the BMS Slave is shown in

Fig. 3. To emulate the behavior of physical

sensors, noise and bias has been added to these

measurements, as shown in Table I. At this stage,

noise and bias are the only non-ideal factors

considered. Future phases of the validation

process such as HiL emulation could include

communication or measurement errors to emulate

other fault conditions.

Table I. Non-ideal sensor magnitudes

Sensor Bias [A] AWGN [W]

Current 0.5 3e-7

Voltage - 3e-3

Temperature - 1e-2

Fig. 3. BMS Slave implementation.

Master implementation

For the purposes of this testbench, a very

simplified version of a BMS master is

implemented. Its main functions are to receive the

measurements from the slaves and run different

SoC estimation algorithms, to measure their

performance and benchmark them. The master

implementation is shown in Fig. 4. The SoC

estimation algorithms will be explained in detail

in subsequent sections.

Fig. 4. Master implementation (SoC algorithms).

Battery Pack

Cell electrical model

To generate a model of the battery pack for MiL

simulation purposes, the first step is to model

cells and group them into a virtual battery. One

common way for modelling cells is using

Equivalent Circuit Models (ECM) [11]. These

models are Thevenin models, consisting of a

controlled voltage source and an output

impedance model. The voltage of the source, also

known as Open Circuit Voltage (OCV), depends

on the SoC, SoH and temperature of the cell. The

output impedance typically includes a series

resistance to model conductivity losses along

with a RC network to model diffusion effects,

known as One-Time-Constant (OTC). This basic

model can be enhanced by adding more RC

networks, or by considering asymmetrical

impedances for charge and discharge, which is

considered in this study and is shown in Fig. 5.

The values of these impedance models usually

depend on temperature and the SoC of the cell and

may be obtained via manufacturer data or specific

laboratory procedures.

Depending on the validation plans, more complex

models incorporating features such as aging or

fault mechanisms may be considered. At this

stage, however, our focus is on developing a

functional model that captures the key dynamics

necessary for SoC comparison. As such, the

simpler model has been deemed sufficient.

Fig. 5. OTC model with asymmetrical R0.

Cell under test

The battery pack modeled in this application is

based on an LTO cell, characterized using

laboratory procedures. It has been modeled using

the asymmetrical R0 OTC model in Fig. 5 (b). The

characterized OCV curves for the cell under test

are shown in Fig. 6, and the impedance and time

constant values for different operation ranges are

shown in Fig. 7.

Cell assembly

To ease the modeling and integration process,

Simscape Batteries [12] has been used. The tool

is integrated in Matlab / Simulink, and allows for

physical (electrical, mechanical and thermal)

modelling of battery packs, from single cells up

to battery modules with hundreds of cells.

The cell previously described can be

parametrized with the cell builder app. With this

cell as core, the battery pack can be modeled. In

this case, the pack under tests consists of two sub-

modules connected in series, each with an

architecture 11s2p. This means that pairs of two

cells are connected in parallel to form a parallel

assembly, or “logic cell”, and then 11 of these

assemblies are connected in series to form a

submodule. Each of them is connected to a single

BMS slave, which will monitor the logic cells

separately (the individual cells connected in

parallel within a logic cell cannot be monitored

independently). Consequently, the complete

battery pack has an architecture of 22s2p, with of

two BMS slaves connected to a BMS master.

Fig. 6. Open Circuit Voltage for different

temperatures and SoC.

Fig. 7. Impedance model for different

temperatures and SoC.

Fig. 8. Module assembly.

Battery Cycler

To test the battery pack with specific current

profiles for different validation programs, a

virtual battery cycler has been implemented. This

virtual cycler is based on two main blocks:

• The battery cycler block integrated in

Simscape Batteries, which generates

physical magnitudes (voltage / current).

• A state machine that manages the cycler.

It reads the test program that implements

the test protocol to be followed (which

varies according to the validation plan),

and controls the inputs to the battery

cycler block, which synthesizes the

current and voltage towards the battery

pack.

Algorithm Benchmarking

State of Charge algorithms

The described simulation platform has been

designed as testbench to compare SoX algorithms

embedded in the BMS master. As a case study,

SoC estimation algorithms are going to be

compared at different levels of implementation

(MiL or SiL). To this end, the following SoC

algorithms have been implemented:

• Coulomb Counting (MiL)

• Coulomb Counting with OCV

recalibration (SiL)

• Extended Kalman Filter (MiL)

• Long Short-Term Memory network

(MiL)

The basics of the selected algorithms are

described in the subsequent subsections.

Coulomb Counting

The Coulomb Counting (CC) method is a

straightforward approach to SoC estimation and

is widely used due to its simplicity. It relies on

integrating the cell's current over time and

comparing it to the nominal capacity of the cell.

The SoC at any given time (t) is calculated using

the following formula:

𝑆𝑜𝐶(𝑡) = 𝑆𝑜𝐶(0) +
1

𝐶𝑛𝑜𝑚
∫ 𝑖𝑏𝑎𝑡𝑡 ⋅ 𝑑𝑡

𝑡

0

 (1)

Where SoC(0) represents the initial State-of-

Charge, ibatt denotes the battery current, and Cnom

is the nominal capacity of the cell.

In ideal conditions where the initial SoC

estimation is known and cell capacity remains

constant, the CC estimation would be perfect.

However, real-world scenarios introduce

complexities such as variations in capacity over

time or due to temperature, or drift in current

measurements, leading to increased errors in the

estimation.

In the testbench, this algorithm has been

implemented at a MiL level, from the Simscape

Batteries libraries.

Coulomb Counting with OCV recalibration

To address the challenges of simple CC-based

SoC estimation, modifications over the

conventional CC algorithm may be proposed. A

first step towards improving the CC algorithm is

adding a recalibration process. This algorithm

functions as the conventional CC algorithm when

there is current flowing through the battery. In

resting periods (when the current is zero or close

to zero for a long time, depending on the

chemistry), cell voltage is assumed to be equal or

close to the OCV, and SoC(t) is adjusted

accordingly.

This keeps the estimation from diverging due to

current drifts or capacity changes but is dependent

on the application having sufficiently long

pauses, which may never be the case for certain

applications such as grid regulation systems.

In the testbench, this algorithm has been

implemented at a SiL level, via a Simulink S-

Function calling a precompiled C library.

Extended Kalman Filter

Kalman filters are a family of general-purpose

estimation algorithms commonly applied to SoC

estimation [11]. These filters operate by utilizing

a cell model, such as an ECM, as their core.

During each iteration, the Kalman filter performs

two key steps. Firstly, it predicts the SoC based

on the current state, the cell model, and the input

parameters. This prediction provides an initial

estimate of the SoC.

Secondly, the Kalman filter corrects this

prediction using real-time measurements,

typically voltage inputs, to update the SoC

estimate. It also adjusts the uncertainty associated

with both the model and the input parameters.

This correction mechanism ensures that the

estimate remains accurate and prevents

divergence or the occurrence of unreasonable

values.

One of the main challenges of KF-based

estimation is developing an accurate model of the

cell, as well as dealing with its non-linearities. For

this reason, algorithms such as Extended Kalman

Filter (EKF) or Unscented Kalman Filter (UKF)

are proposed.

In the testbench, this option has been

implemented at a MiL level, by using the EKF

module provided by the Simscape Batteries

toolbox.

Long Short-Term Memory network

Long Short-Term Memory (LSTM) networks

represent a class of recurrent neural networks

widely utilized for sequence prediction tasks [13],

including SoC estimation in BMS applications

[14]. LSTM networks can capture long-term

dependencies and temporal patterns in time-series

data. In the context of SoC estimation, LSTM

networks leverage historical voltage, current, and

temperature data to predict future SoC values.

During training, LSTM networks (see Fig. 9)

adjust their internal layers to adaptively update

their internal states based on input sequences,

enabling them to effectively model the dynamic

behavior of battery systems. This adaptability

allows LSTM networks to account for complex

nonlinearities and uncertainties inherent in

battery operation. By exploiting the temporal

dynamics of battery behavior, LSTM networks

have shown accurate and robust SoC estimates

[14].

Fig. 9. LSTM cell scheme.

This algorithm has been trained outside the

Simulink environment with a small dataset from

laboratory tests and imported to in the testbench

via an Open Neural Network eXchange (ONNX)

model and the Deep-Learning toolbox.

Validation plan

To compare algorithm performance, different

current waveforms and ambient temperatures are

applied to the virtual batteries to generate voltage

and temperature responses. The current, voltage

and temperature samples input the multiple SoC

estimation algorithms, and their outputs are

logged, so they can be compared.

Validation profiles

The input profiles applied to the virtual battery

pack feature variable conditions in SoC, Depth-

of-Discharge (DoD), ambient temperature,

duration, and current dynamics, allowing the

algorithms to be tested under a wide span of

operation conditions. While the complete test

suite may include dozens of test cases, for the

purposes of this paper, six validation profiles

have been selected to cover SoC estimation under

various conditions:

• Static current, full charge-discharge

processes under constant temperature.

• Static current, partial charges and

discharges under constant temperature

• Dynamic current in mid-high SoC range

with constant temperatures.

• Dynamic current in low SoC range with

constant temperatures.

• Dynamic current in mid-high SoC range

with constant temperatures and pauses.

• Dynamic current in mid-high SoC range

with temperature variations (15ºC –

45ºC).

The dynamic current profiles featured in the

previous test cases should be selected according

to the target application. For the purposes of this

study, a Worldwide harmonized Light vehicles

Test Cycles (WLTC) current profile has been

selected, shown in Fig. 10. This profile has been

applied repeatedly to generate a DoD of a 50% in

the SoC range specified for each test case.

Fig. 10. WLTC-type current profile.

Figures of merit

To compare algorithm performance, different

figures of merit will be used. The most common

indicators are Root Mean Square Error (𝑅𝑀𝑆𝐸),

Mean Absolute Error (𝑀𝐴𝐸), and Maximum

Absolute Error (𝑀𝑎𝑥𝐴𝐸), defined as follows:

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑥𝑛 − 𝑥𝑛)2

𝑁−1

𝑛=0

 (2)

𝑀𝐴𝐸 =
1

𝑁
∑|𝑥𝑛 − 𝑥𝑛|

𝑁−1

𝑛=0

 (3)

𝑀𝑎𝑥𝐴𝐸 = max
𝑛

 |𝑥𝑛 − 𝑥𝑛| (4)

These error metrics will be averaged across

multiple test cases k to obtain global error metrics.

The final comparison metrics will be the average

RMSE (𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅), the average MAE (𝑀𝐴𝐸̅̅ ̅̅ ̅̅ ̅), and

the average MaxAE (𝑀𝑎𝑥𝐴𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅̅), defined as:

𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ =
1

𝐾
∑ 𝑅𝑀𝑆𝐸𝑘

𝐾−1

𝑘=0

 (5)

𝑀𝐴𝐸̅̅ ̅̅ ̅̅ ̅ =
1

𝐾
∑ 𝑀𝐴𝐸𝑘

𝐾−1

𝑘=0

 (6)

𝑀𝑎𝑥𝐴𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =
1

𝐾
∑ 𝑀𝑎𝑥𝐴𝐸𝑘

𝐾−1

𝑘=0

 (7)

To measure the efficiency in implementation and

performance of the algorithms, their execution

times will be recorded and compared. In each test

case k, the execution time of the slowest

algorithm, 𝑇𝑚𝑎𝑥
𝑘 is used as a reference to

normalize the times of each other algorithm in

said procedure 𝑇𝑖
𝑘, yielding the relative execution

time 𝑅𝑖
𝑘 for algorithm i, calculated as shown in

the following equation:

𝑅𝑖
𝑘 = 𝑇𝑖

𝑘/𝑇𝑚𝑎𝑥
𝑘 (8)

The average relative execution time 𝑅𝑖̅ across all

K test cases is given by:

𝑅𝑖̅ =
1

𝐾
∑ 𝑅𝑖

𝑘

𝐾−1

𝑘=0

 (9)

Finally, the performance indicator 𝑃𝑖 for

algorithm i is defined as the inverse of the average

relative execution time, as shown in the following

equation. This magnitude provides a quantitative

measure of the speed of each algorithm across

multiple test case.

𝑃𝑖 =
1

𝑅𝑖̅

=
𝐾

∑
𝑇𝑖

𝑘

𝑇𝑚𝑎𝑥
𝑘

𝐾−1
𝑘=0

(10)

Results

The average error metrics obtained with each

algorithm across the six test cases are summarized

in Table II. It can be observed that the EKF

algorithm performs best, ranking first in all error

metrics. The CC with OCV recalibration

algorithm ranks second. In contrast, the CC and

LSTM algorithms perform significantly worse,

with the LSTM exhibiting noisier output (higher

RMSE) and the CC showing the highest

maximum error.

Table II. Error results

Algorithm 𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ 𝑀𝐴𝐸̅̅ ̅̅ ̅̅ ̅ 𝑀𝑎𝑥𝐴𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅̅

CC 13.06 5.70 6.89

CC with OCV

recalibration
6.20 2.32 2.94

EKF 4.41 1.97 2.25

LSTM 22.22 4.83 6.51

Comparing the performance indicator of the

algorithms (Table III), it can be observed that the

LSTM has an average performance of 1,

indicating it is the slowest algorithm in all test

cases and serves as the reference for the relative

metrics of the other algorithms. The EKF and CC

algorithms, as implemented by the Simscape

Batteries library, are on average 7.4 and 8.9 times

faster than the LSTM algorithm, respectively.

The CC algorithm with OCV recalibration,

implemented at a SiL level in a precompiled C

library, performs the fastest, being 462.6 times

faster than the LSTM algorithm on average. This

implies it is 62.5 times faster than the KF

algorithm, which is the best performing in terms

of error. This is expected, since it is implemented

at a much lower level than the other algorithms.

Table III. Performance indicator results

Algorithm 𝑃𝑖

CC (Sims. Batteries) 8.9

CC with OCV recalibration

(Precompiled)
462.6

EKF (Sims. Batteries) 7.4

LSTM (Deep-Learning Toolbox) 1

Although the error outcomes in a real-world

application might vary due to the simplicity of the

models considered, the general conclusions

drawn from the algorithm comparison are

expected to remain consistent.

Conclusion

This paper presents a methodology for testing

BMS functionalities in a virtual environment,

utilizing tools such as Simscape Batteries in

Matlab/Simulink. A case study comparing

various SoC estimation algorithms at different

implementation levels is presented.

Performance has been evaluated via error metrics,

(RMSE, MAE, and MaxAE) and computational

efficiency, using a custom performance indicator.

Although the primary objective of the paper is not

to conclude on algorithm performance, several

insights have emerged from the comparison.

Among the tested algorithms, the EKF algorithm

consistently outperformed the others, achieving

the lowest error metrics across all test cases,

followed by CC with OCV recalibration. In

contrast, the basic CC and LSTM algorithms

exhibited significantly higher error rates, with the

LSTM producing noisier outputs and the CC

having the highest maximum error.

Regarding computational efficiency, the LSTM

algorithm was found to be the slowest, while CC

with OCV recalibration, implemented at a SiL

level in a precompiled C library, demonstrated

exceptional speed (462.6 times faster than the

LSTM and 62.5 times faster than the EKF).

The next steps in this research involve expanding

the analysis to SiL and HiL stages. Initially, SiL

level versions of the remaining algorithms should

be implemented to enable fair comparisons in

terms of temporal performance.

For HiL testing, the algorithm or algorithms can

be deployed onto the chosen embedded system.

Utilizing a HiL system such as Speedgoat, the

modeled cells can be emulated. These HiL

systems typically provide libraries to interface

their emulation devices with Simulink for real-

time simulation. Consequently, all three versions

(model-based, C-based running in Simulink, and

C-based implemented in the actual device) can

operate concurrently, receiving identical inputs

generated both virtually and physically. This

setup facilitates comprehensive performance

comparisons following the established validation

plans.

Additionally, this testbench currently covers only

SoC validation. Future work could expand the

testbench to validate other estimation algorithms

or other functions of the BMS master, such as

SoH, SoP, balancing algorithms or warning and

alarm triggering.

References

[1]. R. R. Kumar et al. "Advances in Batteries, Battery

Modeling, Battery Management System, Battery

Thermal Management, SOC, SOH, and

Charge/Discharge Characteristics in EV

Applications," in IEEE Access, vol. 11, pp. 105761-

105809, 2023.

[2]. D. Marcos et al. "Verification of an Automotive

ASIL C Battery Management System Slave Unit,"

PCIM Europe, Germany, 2020, pp. 1-8.

[3]. P. Messier et al. "Multi-Cell Emulation for Battery

Management System Validation," VPPC 2018

Chicago, IL, USA, 2018, pp. 1-6.

[4]. C. Fleischer et al. "Development of software and

strategies for Battery Management System testing on

HIL simulator," EVER 2016, Monte Carlo, Monaco,

2016, pp. 1-12.

[5]. A. Kalk et al. “Hardware-in-the-Loop Test Rig for

Rapid Prototyping of Battery Management System

Algorithms”, ITEC 2022, Anaheim, CA, USA, 2022.

[6]. T. M. N. Bui et al. "An Advanced Hardware-in-

the-Loop Battery Simulation Platform for the

Experimental Testing of Battery Management

System," ICMT 2019, Salerno, Italy, 2019, pp. 1-6.

[7]. C. D. Tschritter et al. "Battery Management

System (BMS) Test Stand Utilizing a Hardware-in-

the-Loop (HIL) Emulated Battery," ESTS 2021,

Arlington, VA, USA, 2021, pp. 1-8.

[8]. Sun B. et al. Virtual Battery Pack-Based Battery

Management System Testing Framework. Energies.

2023; 16(2):680.

[9]. Di Rienzo R. Modular Battery Emulator for

Development and Functional Testing of Battery

Management Systems: The Cell Emulator.

Electronics. 2022; 11(8):1215.

[10]. Verani A. Modular Battery Emulator for

Development and Functional Testing of Battery

Management Systems: Hardware Design and

Characterization. Electronics. 2023; 12(5):1232.

[11]. Gregory L. Plett, Extended Kalman filtering for

battery management systems of LiPB-based HEV

battery packs: Part 2. Modeling and identification,

Journal of Power Sources, Volume 134, Issue 2, 2004,

Pages 262-276, ISSN 0378-7753.

[12]. https://es.mathworks.com/products/simscape-

battery.html, accessed on Aug. 15, 2024.

[13]. S. Hochreiter and J. Schmidhuber. 1997. Long

Short-Term Memory. Neural Comput. 9, 8 (November

15, 1997), 1735–1780.

[14]. Azkue, M. et al. "Creating a Robust SoC

Estimation Algorithm Based on LSTM Units and

Trained with Synthetic Data" World Electric Vehicle

Journal 14, no. 7: 197, 2023.

https://es.mathworks.com/products/simscape-battery.html
https://es.mathworks.com/products/simscape-battery.html

