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Abstract 

Lithium-ion battery systems require robust BMS 

for safety and reliability. Extensive BMS testing 

presents challenges like safety risks, long testing 

times, and variability. To address these issues and 

expedite development, a testing methodology 

based on X-in-the-Loop (XiL) paradigms is 

proposed. This methodology ensures 

comprehensive validation and cost reduction. 

Using MathWorks Simulink and Simscape 

Batteries, a virtual testbench is developed to 

model both the BMS and the battery pack. The 

BMS includes virtualized master and slave units, 

emulating sensor behavior and SoC estimation 

algorithms. A virtual battery cycler enables 

specific current profile testing. As case study, this 

setup benchmarks SoC estimation algorithms at 

MiL and SiL levels, with potential HiL expansion 

for real BMS device validation, enhancing testing 

capabilities and automating procedures for safer, 

faster BMS development. 

Introduction 

Lithium-ion battery systems have become 

ubiquitous in modern life, with applications 

ranging from small-scale electronic devices to 

mid-scale automotive systems and large-scale 

stationary applications. To ensure the safe 

operation of these battery packs, Battery 

Management Systems (BMS) are essential. The 

primary functions of BMS include cell 

monitoring (current, voltage, and temperature), 

cell balancing, State-of-X estimation (SoX), 

charge and discharge control, and alarm 

triggering [1]. 

Due to their crucial role in the safety and 

reliability of battery packs, extensive testing of 

BMS is required to prevent operational failures. 

Existing methods for assessing BMS 

functionality significantly contribute to the time-

to-market, given the cost of testing infrastructure, 

the number of required tests, and the duration of 

each test [2]. Furthermore, directly testing BMS 

on real battery packs presents issues such as 

safety concerns—since the BMS is still a 

prototype and may malfunction—long testing 

times—due to the need for charging and 

discharging real batteries—and repeatability 

issues, as the cell state may vary from test to test. 

The V-model design methodology (Fig. 1) offers 

a systematic approach to overcome these 

challenges. This methodology integrates testing 

throughout the development process, associating 

each phase of design with a corresponding phase 

of testing.  

 
Fig. 1. V model design methodology. 



By following the V-model, all requirements are 

verified and validated at each stage, ensuring 

thorough validation of the design and reducing 

the cost and impact of potential changes during 

the hardware validation phase. This methodology 

can be effectively applied to BMS development 

[3 – 4]. After the requirements and specifications, 

a high level, fully virtual model containing the 

BMS and the battery pack (Model-in-the-Loop or 

MiL) is developed. MiL testing allows for the 

creation and simulation of virtual models 

representing different system components, such 

as the whole battery pack, external inputs, and the 

BMS main algorithms. By simulating the whole 

system at this stage, it is possible to address early 

flaws in the design before building hardware 

prototypes, reducing the risk of expensive errors 

and delays further into the project. 

From this starting point, different virtual blocks 

can be progressively replaced with real software 

implementations [5] (Software-in-the-Loop or 

SiL). This allows for more detailed testing of 

software algorithms and control strategies in a 

controlled environment. SiL testing enables 

developers to check the system behavior under 

multiple but controlled conditions, allowing for 

algorithm fine tuning and ensuring their 

performance before deploying them into 

hardware prototypes. 

Finally, validation plans can be executed using 

the real BMS alongside a virtual battery pack in a 

Hardware-in-the-Loop (HiL) setup. This 

approach combines virtual models with physical 

components (e.g. testing the actual BMS but 

emulating the battery and current sensor in the 

HiL system). This approach creates a realistic and 

repeatable testing environment where the actual 

BMS interacts with virtual batteries in real time. 

HiL testing allows developers to evaluate system 

performance under consistent operating 

conditions, including factors such as electrical 

noise or thermal effects. By validating system 

behavior in a HiL setup, developers can ensure 

the BMS operation in real-world applications [6 – 

7]. Achieving this requires the design and 

implementation of dedicated HiL systems [8 – 

10], capable of replicating the behavior of virtual 

cell models and generating the electrical signals 

for the BMS. Alternatively, off-the-shelf 

solutions from manufacturers provide seamless 

integration with simulation environments such as 

Simulink and can be employed to streamline this 

process. 

This step-by-step validation approach offers 

capabilities beyond physical testbenches, such as 

integrating auto-generated code into the BMS or 

performing test coverage analysis of the virtual 

model. Coverage is critical for functions such as 

alarm triggering, where a malfunction could make 

the system hazardous. For SoX estimation 

algorithms, it supports comparative analysis 

among different algorithm families. Furthermore, 

when coupled with code-generation tools, the 

development cycle of such elements is 

accelerated. 

As new applications and chemistries emerge, 

BMS must be designed with shorter development 

times to reduce time-to-market. This increases the 

need for automating testing procedures in a fast 

but reliable manner. To this end, the FASTEST 

project aims to accelerate battery system R&D 

and enable more reliable, safer, and longer-lasting 

battery system designs by developing a fast-track 

testing platform. This platform uses a strategy 

based on Design of Experiments (DoE), 

combining physical and virtual testing. Virtual 

testing is crucial for ensuring that safety and 

reliability requirements are met according to 

various standards (such as ISO 26262 and IEC 

61508). Even when standards require physical 

tests, virtualizing these tests allows for prior 

Digital Twin (DT) validation, significantly 

reducing time and material costs and minimizing 

potential hazards during physical testing. 

This paper presents a method for developing a 

BMS testing testbench using tools such as 

MathWorks Simulink and Simscape Batteries. As 

a case study, the testbench is used for 

benchmarking State-of-Charge (SoC) estimation 

algorithms at MiL and SiL levels of 

implementation. The simulation testbench can be 

easily expanded towards HiL stages via 

integration with Speedgoat HiL, allowing for the 

validation of real BMS devices under desired test 

conditions. 

Testbench Description 

Testbench Structure 

The virtual testbench comprises of two main 

components: the BMS and the battery pack. The 

BMS has been virtualized following the 

architecture described in the subsequent section. 

It includes the BMS slaves, connected to the 

battery pack, and the BMS master that 

coordinates them. On the other hand, the battery 

pack is modeled after the real battery pack 

required for the application and remains 

consistent throughout the MiL – SiL – HiL. 



Battery Management System 

General BMS architecture 

A BMS typically consists of a central unit known 

as the master and multiple distributed units 

referred to as slaves (see Fig. 2) [2]. The slaves 

are directly connected to individual cells and are 

responsible for tasks such as measuring cell 

voltage and temperature, as well as balancing the 

cells. The number of slaves required varies based 

on the scale of the battery pack, as each slave is 

connected to a limited number of cells, typically 

fewer than 20. Conversely, the master unit 

maintains continuous communication with the 

slaves, receiving measurements (usually via an 

isolated daisy-chain protocol) monitoring battery 

pack current, conducting SoX state estimations, 

checking cell balance, and triggering warning and 

alarm systems as necessary. 

 
Fig. 2. BMS architecture. 

Slave implementation 

Each BMS slave monitors cell voltage and 

temperature. Additionally, the current is shared 

among all the cells and is provided to the BMS 

master by an external sensor in the powerbox. The 

implementation of the BMS Slave is shown in 

Fig. 3. To emulate the behavior of physical 

sensors, noise and bias has been added to these 

measurements, as shown in Table I. At this stage, 

noise and bias are the only non-ideal factors 

considered. Future phases of the validation 

process such as HiL emulation could include 

communication or measurement errors to emulate 

other fault conditions. 

 

Table I. Non-ideal sensor magnitudes 

Sensor Bias [A] AWGN [W] 

Current 0.5 3e-7 

Voltage - 3e-3 

Temperature - 1e-2 

 

 
Fig. 3. BMS Slave implementation. 

Master implementation 

For the purposes of this testbench, a very 

simplified version of a BMS master is 

implemented. Its main functions are to receive the 

measurements from the slaves and run different 

SoC estimation algorithms, to measure their 

performance and benchmark them. The master 

implementation is shown in Fig. 4. The SoC 

estimation algorithms will be explained in detail 

in subsequent sections. 

 
Fig. 4. Master implementation (SoC algorithms). 

Battery Pack 

Cell electrical model 

To generate a model of the battery pack for MiL 

simulation purposes, the first step is to model 

cells and group them into a virtual battery. One 

common way for modelling cells is using 

Equivalent Circuit Models (ECM) [11]. These 

models are Thevenin models, consisting of a 

controlled voltage source and an output 

impedance model. The voltage of the source, also 

known as Open Circuit Voltage (OCV), depends 

on the SoC, SoH and temperature of the cell. The 

output impedance typically includes a series 

resistance to model conductivity losses along 

with a RC network to model diffusion effects, 



known as One-Time-Constant (OTC). This basic 

model can be enhanced by adding more RC 

networks, or by considering asymmetrical 

impedances for charge and discharge, which is 

considered in this study and is shown in Fig. 5. 

The values of these impedance models usually 

depend on temperature and the SoC of the cell and 

may be obtained via manufacturer data or specific 

laboratory procedures. 

Depending on the validation plans, more complex 

models incorporating features such as aging or 

fault mechanisms may be considered. At this 

stage, however, our focus is on developing a 

functional model that captures the key dynamics 

necessary for SoC comparison. As such, the 

simpler model has been deemed sufficient. 

 
Fig. 5. OTC model with asymmetrical R0. 

Cell under test 

The battery pack modeled in this application is 

based on an LTO cell, characterized using 

laboratory procedures. It has been modeled using 

the asymmetrical R0 OTC model in Fig. 5 (b). The 

characterized OCV curves for the cell under test 

are shown in Fig. 6, and the impedance and time 

constant values for different operation ranges are 

shown in Fig. 7. 

Cell assembly 

To ease the modeling and integration process, 

Simscape Batteries [12] has been used. The tool 

is integrated in Matlab / Simulink, and allows for 

physical (electrical, mechanical and thermal) 

modelling of battery packs, from single cells up 

to battery modules with hundreds of cells. 

The cell previously described can be 

parametrized with the cell builder app. With this 

cell as core, the battery pack can be modeled. In 

this case, the pack under tests consists of two sub-

modules connected in series, each with an 

architecture 11s2p. This means that pairs of two 

cells are connected in parallel to form a parallel 

assembly, or “logic cell”, and then 11 of these 

assemblies are connected in series to form a 

submodule. Each of them is connected to a single 

BMS slave, which will monitor the logic cells 

separately (the individual cells connected in 

parallel within a logic cell cannot be monitored 

independently). Consequently, the complete 

battery pack has an architecture of 22s2p, with of 

two BMS slaves connected to a BMS master. 

 
Fig. 6. Open Circuit Voltage for different 

temperatures and SoC. 

 

 
Fig. 7. Impedance model for different 

temperatures and SoC. 

 

 
Fig. 8. Module assembly. 

Battery Cycler 

To test the battery pack with specific current 

profiles for different validation programs, a 

virtual battery cycler has been implemented. This 

virtual cycler is based on two main blocks: 



• The battery cycler block integrated in 

Simscape Batteries, which generates 

physical magnitudes (voltage / current). 

• A state machine that manages the cycler. 

It reads the test program that implements 

the test protocol to be followed (which 

varies according to the validation plan), 

and controls the inputs to the battery 

cycler block, which synthesizes the 

current and voltage towards the battery 

pack. 

Algorithm Benchmarking 

State of Charge algorithms 

The described simulation platform has been 

designed as testbench to compare SoX algorithms 

embedded in the BMS master. As a case study, 

SoC estimation algorithms are going to be 

compared at different levels of implementation 

(MiL or SiL). To this end, the following SoC 

algorithms have been implemented: 

• Coulomb Counting (MiL) 

• Coulomb Counting with OCV 

recalibration (SiL) 

• Extended Kalman Filter (MiL) 

• Long Short-Term Memory network 

(MiL) 

The basics of the selected algorithms are 

described in the subsequent subsections. 

Coulomb Counting 

The Coulomb Counting (CC) method is a 

straightforward approach to SoC estimation and 

is widely used due to its simplicity. It relies on 

integrating the cell's current over time and 

comparing it to the nominal capacity of the cell. 

The SoC at any given time (t) is calculated using 

the following formula: 

𝑆𝑜𝐶(𝑡) = 𝑆𝑜𝐶(0) +
1

𝐶𝑛𝑜𝑚
∫ 𝑖𝑏𝑎𝑡𝑡 ⋅ 𝑑𝑡

𝑡

0

 (1) 

Where SoC(0) represents the initial State-of-

Charge, ibatt denotes the battery current, and Cnom 

is the nominal capacity of the cell. 

In ideal conditions where the initial SoC 

estimation is known and cell capacity remains 

constant, the CC estimation would be perfect. 

However, real-world scenarios introduce 

complexities such as variations in capacity over 

time or due to temperature, or drift in current 

measurements, leading to increased errors in the 

estimation. 

In the testbench, this algorithm has been 

implemented at a MiL level, from the Simscape 

Batteries libraries. 

Coulomb Counting with OCV recalibration 

To address the challenges of simple CC-based 

SoC estimation, modifications over the 

conventional CC algorithm may be proposed. A 

first step towards improving the CC algorithm is 

adding a recalibration process. This algorithm 

functions as the conventional CC algorithm when 

there is current flowing through the battery. In 

resting periods (when the current is zero or close 

to zero for a long time, depending on the 

chemistry), cell voltage is assumed to be equal or 

close to the OCV, and SoC(t) is adjusted 

accordingly. 

This keeps the estimation from diverging due to 

current drifts or capacity changes but is dependent 

on the application having sufficiently long 

pauses, which may never be the case for certain 

applications such as grid regulation systems. 

In the testbench, this algorithm has been 

implemented at a SiL level, via a Simulink S-

Function calling a precompiled C library. 

Extended Kalman Filter 

Kalman filters are a family of general-purpose 

estimation algorithms commonly applied to SoC 

estimation [11]. These filters operate by utilizing 

a cell model, such as an ECM, as their core.  

During each iteration, the Kalman filter performs 

two key steps. Firstly, it predicts the SoC based 

on the current state, the cell model, and the input 

parameters. This prediction provides an initial 

estimate of the SoC. 

Secondly, the Kalman filter corrects this 

prediction using real-time measurements, 

typically voltage inputs, to update the SoC 

estimate. It also adjusts the uncertainty associated 

with both the model and the input parameters. 

This correction mechanism ensures that the 

estimate remains accurate and prevents 

divergence or the occurrence of unreasonable 

values. 

One of the main challenges of KF-based 

estimation is developing an accurate model of the 

cell, as well as dealing with its non-linearities. For 

this reason, algorithms such as Extended Kalman 

Filter (EKF) or Unscented Kalman Filter (UKF) 

are proposed. 

In the testbench, this option has been 

implemented at a MiL level, by using the EKF 

module provided by the Simscape Batteries 

toolbox. 



Long Short-Term Memory network 

Long Short-Term Memory (LSTM) networks 

represent a class of recurrent neural networks 

widely utilized for sequence prediction tasks [13], 

including SoC estimation in BMS applications 

[14]. LSTM networks can capture long-term 

dependencies and temporal patterns in time-series 

data. In the context of SoC estimation, LSTM 

networks leverage historical voltage, current, and 

temperature data to predict future SoC values. 

During training, LSTM networks (see Fig. 9) 

adjust their internal layers to adaptively update 

their internal states based on input sequences, 

enabling them to effectively model the dynamic 

behavior of battery systems. This adaptability 

allows LSTM networks to account for complex 

nonlinearities and uncertainties inherent in 

battery operation. By exploiting the temporal 

dynamics of battery behavior, LSTM networks 

have shown accurate and robust SoC estimates 

[14]. 

 
Fig. 9. LSTM cell scheme. 

This algorithm has been trained outside the 

Simulink environment with a small dataset from 

laboratory tests and imported to in the testbench 

via an Open Neural Network eXchange (ONNX) 

model and the Deep-Learning toolbox. 

Validation plan 

To compare algorithm performance, different 

current waveforms and ambient temperatures are 

applied to the virtual batteries to generate voltage 

and temperature responses. The current, voltage 

and temperature samples input the multiple SoC 

estimation algorithms, and their outputs are 

logged, so they can be compared. 

Validation profiles 

The input profiles applied to the virtual battery 

pack feature variable conditions in SoC, Depth-

of-Discharge (DoD), ambient temperature, 

duration, and current dynamics, allowing the 

algorithms to be tested under a wide span of 

operation conditions. While the complete test 

suite may include dozens of test cases, for the 

purposes of this paper, six validation profiles 

have been selected to cover SoC estimation under 

various conditions: 

• Static current, full charge-discharge 

processes under constant temperature. 

• Static current, partial charges and 

discharges under constant temperature 

• Dynamic current in mid-high SoC range 

with constant temperatures. 

• Dynamic current in low SoC range with 

constant temperatures. 

• Dynamic current in mid-high SoC range 

with constant temperatures and pauses. 

• Dynamic current in mid-high SoC range 

with temperature variations (15ºC – 

45ºC). 

The dynamic current profiles featured in the 

previous test cases should be selected according 

to the target application. For the purposes of this 

study, a Worldwide harmonized Light vehicles 

Test Cycles (WLTC) current profile has been 

selected, shown in Fig. 10. This profile has been 

applied repeatedly to generate a DoD of a 50% in 

the SoC range specified for each test case.  

 
Fig. 10. WLTC-type current profile. 

Figures of merit 

To compare algorithm performance, different 

figures of merit will be used. The most common 

indicators are Root Mean Square Error (𝑅𝑀𝑆𝐸), 

Mean Absolute Error (𝑀𝐴𝐸), and Maximum 

Absolute Error (𝑀𝑎𝑥𝐴𝐸), defined as follows: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑥𝑛 − 𝑥𝑛)2

𝑁−1

𝑛=0

 (2) 

 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑥𝑛 − 𝑥𝑛|

𝑁−1

𝑛=0

 (3) 



 

𝑀𝑎𝑥𝐴𝐸 = max
𝑛

 |𝑥𝑛 − 𝑥𝑛| (4) 

 

These error metrics will be averaged across 

multiple test cases k to obtain global error metrics. 

The final comparison metrics will be the average 

RMSE (𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ ), the average MAE (𝑀𝐴𝐸̅̅ ̅̅ ̅̅ ̅), and 

the average MaxAE (𝑀𝑎𝑥𝐴𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ), defined as: 

 

𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ =
1

𝐾
∑ 𝑅𝑀𝑆𝐸𝑘

𝐾−1

𝑘=0

 (5) 

 

𝑀𝐴𝐸̅̅ ̅̅ ̅̅ ̅ =
1

𝐾
∑ 𝑀𝐴𝐸𝑘

𝐾−1

𝑘=0

 (6) 

 

𝑀𝑎𝑥𝐴𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =
1

𝐾
∑ 𝑀𝑎𝑥𝐴𝐸𝑘

𝐾−1

𝑘=0

 (7) 

 

To measure the efficiency in implementation and 

performance of the algorithms, their execution 

times will be recorded and compared. In each test 

case k, the execution time of the slowest 

algorithm, 𝑇𝑚𝑎𝑥
𝑘  is used as a reference to 

normalize the times of each other algorithm in 

said procedure 𝑇𝑖
𝑘, yielding the relative execution 

time 𝑅𝑖
𝑘 for algorithm i, calculated as shown in 

the following equation: 

 

𝑅𝑖
𝑘 = 𝑇𝑖

𝑘/𝑇𝑚𝑎𝑥
𝑘  (8) 

 

The average relative execution time 𝑅𝑖̅ across all 

K test cases is given by: 

 

𝑅𝑖̅ =
1

𝐾
∑ 𝑅𝑖

𝑘

𝐾−1

𝑘=0

 (9) 

 

Finally, the performance indicator 𝑃𝑖 for 

algorithm i is defined as the inverse of the average 

relative execution time, as shown in the following 

equation. This magnitude provides a quantitative 

measure of the speed of each algorithm across 

multiple test case. 

 

𝑃𝑖 =
1

𝑅𝑖̅

=
𝐾

∑
𝑇𝑖

𝑘

𝑇𝑚𝑎𝑥
𝑘

𝐾−1
𝑘=0

 
(10) 

Results 

The average error metrics obtained with each 

algorithm across the six test cases are summarized 

in Table II. It can be observed that the EKF 

algorithm performs best, ranking first in all error 

metrics. The CC with OCV recalibration 

algorithm ranks second. In contrast, the CC and 

LSTM algorithms perform significantly worse, 

with the LSTM exhibiting noisier output (higher 

RMSE) and the CC showing the highest 

maximum error.  

 

Table II. Error results 

Algorithm 𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅  𝑀𝐴𝐸̅̅ ̅̅ ̅̅ ̅ 𝑀𝑎𝑥𝐴𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

CC 13.06 5.70 6.89 

CC with OCV 

recalibration 
6.20 2.32 2.94 

EKF 4.41 1.97 2.25 

LSTM 22.22 4.83 6.51 

 

Comparing the performance indicator of the 

algorithms (Table III), it can be observed that the 

LSTM has an average performance of 1, 

indicating it is the slowest algorithm in all test 

cases and serves as the reference for the relative 

metrics of the other algorithms. The EKF and CC 

algorithms, as implemented by the Simscape 

Batteries library, are on average 7.4 and 8.9 times 

faster than the LSTM algorithm, respectively. 

The CC algorithm with OCV recalibration, 

implemented at a SiL level in a precompiled C 

library, performs the fastest, being 462.6 times 

faster than the LSTM algorithm on average. This 

implies it is 62.5 times faster than the KF 

algorithm, which is the best performing in terms 

of error. This is expected, since it is implemented 

at a much lower level than the other algorithms. 

 

Table III. Performance indicator results 

Algorithm 𝑃𝑖 

CC (Sims. Batteries) 8.9 

CC with OCV recalibration 

(Precompiled) 
462.6 

EKF (Sims. Batteries) 7.4 

LSTM (Deep-Learning Toolbox) 1 

 

Although the error outcomes in a real-world 

application might vary due to the simplicity of the 

models considered, the general conclusions 

drawn from the algorithm comparison are 

expected to remain consistent. 



Conclusion 

This paper presents a methodology for testing 

BMS functionalities in a virtual environment, 

utilizing tools such as Simscape Batteries in 

Matlab/Simulink. A case study comparing 

various SoC estimation algorithms at different 

implementation levels is presented. 

Performance has been evaluated via error metrics, 

(RMSE, MAE, and MaxAE) and computational 

efficiency, using a custom performance indicator. 

Although the primary objective of the paper is not 

to conclude on algorithm performance, several 

insights have emerged from the comparison. 

Among the tested algorithms, the EKF algorithm 

consistently outperformed the others, achieving 

the lowest error metrics across all test cases, 

followed by CC with OCV recalibration. In 

contrast, the basic CC and LSTM algorithms 

exhibited significantly higher error rates, with the 

LSTM producing noisier outputs and the CC 

having the highest maximum error. 

Regarding computational efficiency, the LSTM 

algorithm was found to be the slowest, while CC 

with OCV recalibration, implemented at a SiL 

level in a precompiled C library, demonstrated 

exceptional speed (462.6 times faster than the 

LSTM and 62.5 times faster than the EKF).  

The next steps in this research involve expanding 

the analysis to SiL and HiL stages. Initially, SiL 

level versions of the remaining algorithms should 

be implemented to enable fair comparisons in 

terms of temporal performance. 

For HiL testing, the algorithm or algorithms can 

be deployed onto the chosen embedded system. 

Utilizing a HiL system such as Speedgoat, the 

modeled cells can be emulated. These HiL 

systems typically provide libraries to interface 

their emulation devices with Simulink for real-

time simulation. Consequently, all three versions 

(model-based, C-based running in Simulink, and 

C-based implemented in the actual device) can 

operate concurrently, receiving identical inputs 

generated both virtually and physically. This 

setup facilitates comprehensive performance 

comparisons following the established validation 

plans. 

Additionally, this testbench currently covers only 

SoC validation. Future work could expand the 

testbench to validate other estimation algorithms 

or other functions of the BMS master, such as 

SoH, SoP, balancing algorithms or warning and 

alarm triggering. 
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