

EUROPEAN COMMISSION

HORIZON EUROPE PROGRAMME – TOPIC: HORIZON-CL5-2022-D2-01

FASTEST

Fast-track hybrid testing platform for the development of

battery systems

Deliverable D5.3: Integration plan for

Digital Twin on the platform

Primary Author Antonio Paolo Passaro

Organization Comau S.p.A.

Date: 31.03.2025

Doc.Version: [Complete]

Co-funded by the European Union and UKRI under grant agreements N° 101103755 and 10078013, respectively. Views and

opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the

Ref. Ares(2025)2644328 - 02/04/2025

 D5.3: Integration plan for Digital Twin on the platform

Page 2 of 28

Date: 31/03/2025

European Climate, Infrastructure and Environment Executive Agency (CINEA). Neither the European Union nor CINEA can be

held responsible for them

Document Control Information

Settings Value

Work package: WP5

Deliverable:
Integration plan for Digital Twin on the

platform

Deliverable Type: Report

Dissemination Level: Public

Due Date: 31.03.2025 (Month 22)

Actual Submission Date: DD.MM.YYY

Pages: < # >

Doc. Version: Draft 1.0 / Draft 2.0 / Final

GA Number: 101103755

Project Coordinator:
Bruno Rodrigues │ ABEE
(bruno.rodrigues@abeegroup.com)

Formal Reviewers

Name Organization Date

Laura Oca MGEP 24.03.2025

Antonio Silvio de
Letteriis

FLASHBATTERY 24.03.2025

Document History

Version Date Description Author

0.1 03.02.2025 Document structure

Antonio Paolo

Passaro, Daniela
Fontana (Comau)

0.2

10.03.2025
Complete Comau

contents

Antonio Paolo

Passaro, Daniela
Fontana (Comau)

 D5.3: Integration plan for Digital Twin on the platform

Page 3 of 28

Date: 31/03/2025

0.3 14.03.2025 Formatting
Antonio Paolo

Passaro, Daniela
Fontana (Comau)

0.4 18.03.2025 Complete Inegi contents
Marco Rodrigues,

Nuno Marques (Inegi)

1.0 21.03.2025
Final check and
formatting to prepare

draft for reviewers

Daniela Fontana
(Comau)

2.0 28.03.2025
Final version for
submission

Antonio Paolo

Passaro, Daniela
Fontana, Eliana

Giovannitti (Comau)

 D5.3: Integration plan for Digital Twin on the platform

Page 4 of 28

Date: 31/03/2025

Project Abstract

Current methods to evaluate Li-ion batteries safety, performance, reliability and

lifetime represent a remarkable resource consumption for the overall battery R&D

process. The time or number of tests required, the expensive equipment and a

generalised trial-error approach are determining factors, together with a lack of

understanding of the complex multiscale and multi-physics phenomena in the

battery system. Besides, testing facilities are operated locally, meaning that data

management is handled directly in the facility, and that experimentation is done

on one test bench.

The FASTEST project aims develop and validate a fast-track testing platform to

deliver a strategy based on Design of Experiments (DoE) and robust testing

results, combining multi-scale and multi-physics virtual and physical testing. This

will enable an accelerated battery system R&D and more reliable, safer and long-

lasting battery system designs. The project’s prototype of a fast-track hybrid

testing platform aims for a new holistic and interconnected approach. From a global

test facility perspective, additional services like smart DoE algorithms, virtualised

benches, and DT data are incorporated into the daily facility operation to reach a

new level of efficiency.

During the project, FASTEST consortium aims to develop up to TRL6 the platform

and its components: the optimal DoE strategies according to three different use

cases (automotive, stationary, and off-road); two different cell chemistries, 3b and

4 solid-state (oxide polymer electrolyte); the development of a complete set of

physic-based and data driven models able to substitute physical characterisation

experiments; and the overarching Digital Twin architecture managing the

information flows, and the TRL6 proven and integrated prototype of the hybrid

testing platform.

 D5.3: Integration plan for Digital Twin on the platform

Page 5 of 28

Date: 31/03/2025

LIST OF ABBREVIATIONS, ACRONYMS AND DEFINITIONS

Acronym Name

AMQP Advanced Message Queuing Protocol

Angular
A component-based framework for

building scalable web applications

AKS Azure Kubernetes Service

BE Backend

DevOps Development and Operations

DB Database

DX.Y Deliverable n. Y of Work Package n. X

DoE Design of Experiments

DT Digital Twin

ETL Extract, Transform, Load

Eureka Server
A service registry for devices and services

detection on a network

FE Frontend

FMI Functional Mock-up Interfaces

FMU Functional Mock-up Unit

FTPS File Transfer Protocol Secure

Go (GoLang) Open source programming language

HiveMQ a trusted MQTT platform

HTTP Hyper text transfer protocol

HTTPS Hypertext Transfer Protocol Secure

IO Input Output

JSON JavaScript Object Notation

JWT JSON web token

Kubectl Kubernetes command line tool

LIMS
Laboratory Inventory Management
System

MongoDB A document database

MQTT Message Queuing Telemetry Transport

NoSQL Not Only SQL

OS Operating System

RabbitMQ an open-source, message broker

RBAC Role-Based Access Control

REST API (or RESTful
API)

REpresentational State Transfer
Application Programming Interface

Spring Boot
An open-source framework for application
creation

SW Software

TLS Transport Layer Security

TX.Y Task n. Y of Work Package n. X

URL Uniform Resouce Locator

UUID Unique identifier

 D5.3: Integration plan for Digital Twin on the platform

Page 6 of 28

Date: 31/03/2025

UUT Unit under test

VNET Virtual NETwork

WAF Web Application Firewall

WebSockets A computer communications protocol

WP Work Package

LIST OF FIGURES

Figure 1 Digital Twin Architecture ... 10

Figure 2 Digital Twin software architecture ... 12

Figure 3 MQTTS bridge ... 13

Figure 4 Data Collector ... 15

Figure 5 Analysis Service .. 16

Figure 6 Eureka Server ... 18

Figure 7 Digital Twin dashboard ... 21

Figure 8 Test summary section .. 22

Figure 9 Test details section .. 22

Figure 10 Test filter section ... 23

Figure 11 Trend chart section .. 23

Figure 12 Models Exchange Interface Login .. 24

Figure 13 User’s Management Interface ... 24

Figure 14 Structured Folder Hierarchy ... 25

 D5.3: Integration plan for Digital Twin on the platform

Page 7 of 28

Date: 31/03/2025

Table of Contents

1. EXECUTIVE SUMMARY ... 8

2. OBJECTIVES .. 9

3. INTRODUCTION ... 9

4. DESCRIPTION OF WORK .. 10

4.1 Digital Twin system architecture .. 10

4.2 SW architecture .. 11

4.3 Integration plan with LIMS (WP6) .. 12

4.4 Digital Twin components .. 13

4.4.1 Data collector ... 13

4.4.2 Analysis service .. 15

4.4.3 Communication monitoring ... 17

4.4.4 Authentication and Authorization ... 18

4.4.5 User interface ... 20

4.4.6 Models Exchange Interface.. 23

4.4.7 Test request handler .. 25

4.4.8 Models Management .. 26

5. CONCLUSION .. 27

6. REFERENCES ... 28

 D5.3: Integration plan for Digital Twin on the platform

Page 8 of 28

Date: 31/03/2025

1. EXECUTIVE SUMMARY
The deliverable leverages specifications from D1.3 and insights from the DoE in

WP2 to define the capability requirements and architecture for the DT

implementation platform. It also utilizes the ontology from T5.1 and DT models

from T5.2. By analysing the most suitable solutions for the mapped data, required

data flow, and system capabilities, the key functional modules, communication

protocols, software, hardware, front-end, and platform interfaces are identified.

This includes incorporating simulation models for battery parameters and

behavioural prediction tools from the inputs of WP3 and WP4. Additionally, various

information output methods, such as user interfaces, are considered.

An architecture specification detailing the requisite capabilities, validation criteria

for system performance, and frontend requirements for visualizing DT components

is established.

The data pipeline, system architecture, and all necessary requirements for

integrating the data and model outputs into the platform are outlined.

 D5.3: Integration plan for Digital Twin on the platform

Page 9 of 28

Date: 31/03/2025

2. OBJECTIVES
The objective of WP5 is to create, instantiate and validate the digital twin of the

battery systems and its components. The work started with the development of a

digital twin ontology and a data mapping library: the results are reported in the

deliverable D5.1. Afterwards, we proceeded with the definition of the DT

component structure within Task T5.2 (deliverable D5.2) and then with the

development of a plan to integrate the different components in the DT platform

(Task T5.3). This deliverable reports the results of this last task and represents the

starting point for the integration that will be implemented in the final task of WP5.

3. INTRODUCTION
Taking into account the data management and communication architecture

(deliverable D1.2), the requirements and specifications for the Digital Twin

(deliverable D1.3), the Digital Twin ontology, and the defined data assets, this

document delivers a comprehensive description of the Digital Twin system

architecture. It details the implementation of the core components of the Digital

Twin, the application requirements, data pipeline, and integration processes

necessary to implement the solution within the overall project platform (LIMS).

The document begins by defining the Digital Twin system architecture, which is a

web-based platform hosted on the Cloud employing a microservice architecture. It

analyses all the relevant Cloud resources and services, with a focus on the Azure

VPC architecture and the databases.

In particular, the Cloud will host the In.Grid platform, Comau IoT platform for data

collection, monitoring and representation, and a series of additional microservices

that will compose the overall Digital twin platform. From this point in the

document, In.Grid Digital Twin (In.Grid DT) refers to the ecosystem of

microservices developed by Comau to implement the Digital Twin platform.

Next, the software architecture is described, which is based on Docker and

Kubernetes. Digital Twin components are implemented as microservices running in

Docker containers that are deployed to a Kubernetes cluster on the Cloud. These

components communicate with each other and external systems (LIMS) using

MQTT and REST API protocols. MQTT, a standard IoT protocol, is utilized primarily

for data collection and real-time data exchange, while REST API, based on standard

HTTP methods, is mainly used for the exchange of data between web services.

Both communication protocols employ the JSON standard data format.

Communication between the Digital Twin platform and the LIMS platform is

established via an MQTT bridge that connects the local Digital Twin broker to the

external LIMS broker. This bridge enables data exchange between Digital Twin

components and LIMS components by forwarding messages on predefined topics

between the two remote brokers.

The implementation of all Digital Twin components is detailed as follows: starting

with the data collector, which receives test results from LIMS, followed by the

Digital Twin user interface for data visualization, the analysis service for data

 D5.3: Integration plan for Digital Twin on the platform

Page 10 of 28

Date: 31/03/2025

aggregation, filtering, and representation, the services that manage the Digital

Twin models, the Models Exchange Interface, the Test Request Handler, and the

Models Management.

Given the continuous improvements within the project, there may be a need for

modifications, adjustments, or the addition of new features throughout the

project's lifespan.

4. DESCRIPTION OF WORK

4.1 Digital Twin system architecture
The Digital Twin platform is a web-based application hosted on Cloud that

implements a microservice architecture. The microservice approach ensures

flexibility and scalability of software modules that can be easily scaled up or down,

according to users and customers' needs. All microservices are orchestrated by

Kubernetes: in case of Azure cloud, an Azure Kubernetes Service (AKS) is the

managed service of the orchestrator.

In Figure 1, the Digital Twin Architecture is presented, emphasizing its core

components. All services run inside a subnet:

Figure 1 Digital Twin Architecture

In the design phase data isolation was considered as a requirement. For this

reason, the subset of services is deployed for the project and, if shared, contains

network segregation principles.

 D5.3: Integration plan for Digital Twin on the platform

Page 11 of 28

Date: 31/03/2025

The network segregation is a critical concept of the solution designed, to ensure

security of data flowing among different services. For this scope a segregated

Virtual NETwork (VNET) and a subnet for Kubernetes services have been defined.

In the defined VNET, every communication with external should be managed with

Virtual Endpoints.

Starting from bottom level of the data stack, the non-relational database Cosmos

DB has been connected to the cluster using a dedicated private endpoint. The

business logic of the application is running in the green area, and the only point of

access is the Nginx reverse proxy, directly connected to the Application Gateway.

The application gateway works as Web Application Firewall (WAF) ensuring also

security of requests coming from users on Internet.

A subset of services is deployed for the project and is shared across services:

• Container registry;

• Bastion host.

The container registry is useful to store all docker images used for the project and

is connected to the DevOps pipelines of the development team.

Finally, the Bastion host is a virtual machine connected to the VNET of the

deployment, used for monitoring, extracting logs and interacting with Kubectl

command line interface. From Bastion host administrator users can deeply interact

with all services in the deployment.

4.2 SW architecture
Digital Twin SW architecture consists of different components, each one

representing a specific functionality of the system (Figure 2). Each component is

a microservice running in a Docker container deployed to the Kubernetes cluster

on DT Cloud. The user interface is web based, and it runs behind a reverse proxy

that allows only the HTTPS communication. The components communicate

between each other and with external systems by using MQTT/AMQP and REST

API protocols. For this reason, a RabbitMQ broker is deployed within the cluster as

for the other components.

Rest API are based on standard HTTP methods and are the preferred way to

exchange data between web services.

The MQTT protocol is mainly used for data collection and for real-time data

exchange with the subscribe/publish mechanism. The MQTT broker manages the

communication between the different services thus allowing subscribing and

publishing data on different topics.

JSON is the standard data format that will be used for data exchange both between

the Digital twin and other systems and between the DT components. The JSON

format will be used for exchange MQTT messages and for Rest API contents.

 D5.3: Integration plan for Digital Twin on the platform

Page 12 of 28

Date: 31/03/2025

Figure 2 Digital Twin software architecture

4.3 Integration plan with LIMS (WP6)
The communication between DT platform and LIMS is based on the MQTT protocol

and takes place through a MQTTS bridge between the HiveMQ broker (deployed on

LIMS platform) and the RabbitMQ broker (deployed on DT platform). The bridge

configuration is done on HiveMQ broker, using the HiveMQ bridge extension. The

bridge allows the communication and the data exchange between the LIMS

components and the DT components and will forward all the MQTT messages of

predefined topics between the two remote brokers (Figure 3).

Communication is secured thanks to the TLS configuration. The HiveMQ broker will

connect to the RabbitMQ broker using the TLS port 8883 and with user and

password authentication. For the TLS configuration it is necessary to map the client

and server certificates with "p12" format inside the HiveMQ docker container and

add the path in the configuration file.

In the bridge configuration file it is possible to specify:

❑ RabbitMQ address and port

❑ Username and password for the authentication

❑ TLS configuration:

- Path and password of the client certificate (keystore)

- Private key password

- Path and password of the server certificate (trustore)

❑ Topics configuration:

 - Topics to bridge messages

 - Mode: Publisher (PUB) or Subscriber (SUB)

 D5.3: Integration plan for Digital Twin on the platform

Page 13 of 28

Date: 31/03/2025

Figure 3 MQTTS bridge

4.4 Digital Twin components

4.4.1 Data collector
The Data Collector microservice plays a crucial role in the data acquisition and

storage process within the system. Its primary responsibility is to capture and

store test results from the Laboratory Information Management System (LIMS),

handling both real and simulated battery tests.

At its core, the Data Collector is developed as a Java Spring Boot microservice

designed for robustness and scalability. It integrates closely with RabbitMQ,

serving as a message listener to facilitate real-time data processing and storage.

The Data Collector continually listens for incoming data through a RabbitMQ

listener. This listener is configured to connect to the RabbitMQ broker, subscribing

specifically to the AMQ queue named "fastest" via the AMQ protocol on port 5672.

When test results are published to this queue, the listener captures the messages,

ensuring that they are promptly processed.

Upon receiving test results, the Data Collector converts these results into the

Digital Twin (DT) data format. This standardized format ensures consistency and

compatibility with other system components. Once converted, the data is stored

in a local NoSQL database, MongoDB, known for its flexibility and scalability in

handling large datasets.

To facilitate seamless data acquisition, an MQTT to AMQP bridge has been

configured in RabbitMQ broker. This bridge enables the effective transfer of

 D5.3: Integration plan for Digital Twin on the platform

Page 14 of 28

Date: 31/03/2025

messages from an MQTT topic to the RabbitMQ AMQP queue. The configuration of

this bridge is executed at runtime by the Data Collector's configuration module,

ensuring dynamic adaptability to system requirements.

The configuration specifics include:

- MQTT Topic: `/test-results` (configured in the MQTT bridge)

- AMQP Queue: `fastest`

- Message Payload: As detailed in Deliverable D5.2 under “Communication

Data Model”

The data acquisition flow begins with the remote HiveMQ broker, which publishes

test results to the specified MQTT topic and forwards them to the RabbitMQ broker.

The MQTT to AMQP bridge then transfers these messages to the corresponding

AMQP queue in the RabbitMQ broker. The Data Collector's RabbitMQ listener,

subscribed to this queue, receives the messages and initiates the processing and

storage sequence (Figure 4).

Advantages of the Data Collector System:

1. Real-Time Data Processing: The integration with RabbitMQ allows for real-

time reception and processing of test data, ensuring that the system

remains updated and responsive to new information.

2. Scalability: Leveraging Spring Boot and MongoDB enhances the

microservice’s scalability, accommodating increasing volumes of data

without compromising performance.

3. Flexibility: The use of a standardized DT data format and the dynamic

configuration of the MQTT bridge provide flexibility in handling diverse data

sources and meeting varying system demands.

4. Reliability: This architecture ensures reliable data transfer from the LIMS to

the local database, maintaining data integrity and availability.

Considering the continuous advancements in the project, future enhancements

may include:

- Enhanced Data Validation: Implementing more robust data validation

mechanisms to ensure the quality and consistency of the incoming test data.

- Monitoring and Alerts: Developing monitoring tools and alert systems to

promptly identify and address any issues in the data acquisition process.

- Optimized Data Storage: Exploring additional optimizations for the data

storage process to improve performance and efficiency.

In conclusion, the Data Collector microservice is a vital component of the project,

ensuring seamless data collection, conversion, and storage, while maintaining high

standards of performance, scalability, and reliability.

 D5.3: Integration plan for Digital Twin on the platform

Page 15 of 28

Date: 31/03/2025

Figure 4 Data Collector

4.4.2 Analysis service
The Analysis Service is a backend microservice designed to manage and process

test data, providing essential functionalities for data monitoring, aggregation,

filtering, and representation. It serves as the intermediary between the data stored

in the database and the Digital Twin (DT) user interface, ensuring that all relevant

information is available for visualization in a coherent and efficient manner.

The Analysis Service is developed using Spring Boot java framework. This

microservice reads data from a MongoDB database, which stores all test results

and related information. By accessing this data, the Analysis Service enables

comprehensive monitoring and analysis of the test results over time.

Key features:

1. Data Aggregation: The Analysis Service aggregates test data to provide

summarized views and insights. This helps in understanding trends and

patterns in the test results, facilitating more informed decision-making.

2. Data Filtering: To manage and deal with large volumes of data, the Analysis

Service includes filtering capabilities. Users can filter data based on various

criteria such as test dates, test types, and outcomes, enabling more focused

and relevant data analysis.

3. Data Representation: The service converts raw test data into a format

suitable for visualization on the DT user interface. This includes structuring

data in a user-friendly manner, ensuring that users can easily interpret and

interact with the information.

To facilitate interaction with the frontend (FE) user interface, the Analysis Service

exposes a set of RESTful APIs. These APIs are designed to provide efficient access

to all data related to the tests performed, ensuring that the frontend has all

necessary information for comprehensive visualization.

By exposing well-defined REST APIs, it ensures that the frontend can efficiently

fetch and display all necessary data, providing users with a coherent and

interactive experience (Figure 5).

 D5.3: Integration plan for Digital Twin on the platform

Page 16 of 28

Date: 31/03/2025

Advantages of the Analysis Service:

1. Enhanced Data Insights: By aggregating and summarizing test data, the

service offers valuable insights, helping users to understand trends and

make informed decisions.

2. Scalability: Built on Spring Boot and MongoDB, the service is designed to

handle increasing volumes of data and growing user demands without

compromising performance.

3. User-Friendly Interface: The REST APIs ensure that the frontend can easily

interact with the backend, providing a seamless and user-friendly

experience for data visualization.

As the project progresses, there are several potential enhancements to the

Analysis Service that could further improve its functionality:

- Advanced Analytics: Incorporating more advanced analytical capabilities,

such as predictive analytics and machine learning, to provide deeper

insights into test data.

- API Expansion: Extending the range of APIs to include more granular data

retrieval options and additional filtering capabilities.

In conclusion, the Analysis Service ensures effective data processing, aggregation,

and representation. By providing robust and scalable backend support, it enables

comprehensive visualization and analysis of test data, enhancing the overall

functionality and user experience of the DT platform.

Figure 5 Analysis Service

Exposed APIs:

• Get list of tests, with the possibility to filter by completed, in progress,

started tests. For each test, test name, test type, unit under test, scheduled

date, status are specified.

• Get test details, with the possibility to filter by test id or test unique

identifier. Each test is described by:

- Test name (e.g. Overcharge)

- Test type (e.g. Module or Cell level)

 D5.3: Integration plan for Digital Twin on the platform

Page 17 of 28

Date: 31/03/2025

- UUT (Unit under test e.g. Cell-01)

- UUID (Unique identifier)

- Test bench (Physical/virtual)

- Scheduled date (UTC)

- Test status (In progress, completed, started)

- List of variables. For each variable, variable name, type (Input/output)

and unit of measure are specified

• Get tests analytics: To retrieve the number of tests performed at cell or

module level and the number of in progress, completed and started tests.

• Get test results: Filter tests by test id or test unique identifier and retrieve

the input/output variables values over time to build the trend chart on the

user interface.

4.4.3 Communication monitoring
The communication monitoring component ensures that all DT components are up

and running by actively monitoring the health and the availability of the

components over time. The communication monitoring component is implemented

by the Eureka Server.

Eureka Server is a service registry provided by Netflix, crucial for the microservices

architecture. It is an essential component within Spring Cloud Netflix and is widely

used to maintain the Service Registry. The primary role of Eureka Server is to allow

microservices to register themselves and to discover other registered services

seamlessly, promoting service discovery within the ecosystem of microservices

(Figure 6).

Eureka Server functions as a service registry server, where all independent

microservices register themselves. The core idea is to enable these microservices

to look up each other dynamically, facilitating communication and coordination

without hard-coding any service addresses. This dynamic nature to locate services

is essential in cloud environments where service instances frequently change due

to scaling and auto-scaling activities.

Advantages of using Eureka Server:

1. Service Discovery: Eureka Server provides an intuitive way for services to

discover each other in a microservices architecture. This ensures that the

communication between services is always robust, even when instances are

added or removed dynamically.

2. Load Balancing: Through Eureka Server, load balancing across multiple

instances of a service is automated, enhancing the system's efficiency and

resilience.

3. Failover and Resilience: Eureka’s client-side load-balancing capabilities

enhance failover and resilience by allowing services to route requests to

available instances, even if some instances fail.

 D5.3: Integration plan for Digital Twin on the platform

Page 18 of 28

Date: 31/03/2025

4. Dynamic Scaling: Eureka facilitates dynamic scaling of services. When new

instances are spun up, they automatically register with Eureka Server,

making them instantly discoverable by other services.

5. Ease of Configuration: Integrating with Spring Cloud Netflix Eureka involves

minimal configuration changes, allowing for quick setup and deployment,

especially beneficial for iterative and agile development environments.

Disadvantages of using Eureka Server:

1. Overhead: Maintaining a service registry adds overhead to the system

architecture. There is a need for an additional layer that needs to be

managed and monitored.

2. Single Point of Failure: Unless configured in a high-availability setup (with

multiple Eureka instances), the Eureka Server can become a single point of

failure, risking the entire service discovery mechanism.

3. Latency: There might be a slight latency introduced due to service discovery

through Eureka, which may affect the system’s performance, especially

when scaling at a large number.

In this project, microservices have been developed to connect to the Spring Cloud

Netflix Eureka Server. Each microservice registers itself to the Eureka Server upon

startup, making itself available for discovery by other services. This setup ensures

that any microservice can discover and communicate with others by querying the

Eureka Server, without needing to hardwire the addresses of other services.

The configuration involves setting up a Eureka Server and ensuring that each

microservice client within the project is configured to register with the server. This

involves straightforward integration using annotations such as

`@EnableEurekaServer` on the server application and `@EnableEurekaClient` on

the client microservices.

This configuration ensures that the communication within the microservices

architecture remains flexible, scalable, and resilient, promoting a robust

microservices ecosystem through dynamic service discovery and registration [1],

[2], [3].

Figure 6 Eureka Server

4.4.4 Authentication and Authorization
In the context of this project, authentication and authorization are crucial elements

to ensure secure access to the platform and to the backend services. To achieve

 D5.3: Integration plan for Digital Twin on the platform

Page 19 of 28

Date: 31/03/2025

this, we have integrated Spring Cloud Gateway and Keycloak, leveraging their

robust features for handling authentication and authorization processes.

Spring Cloud Gateway serves as the API gateway for the system, acting as a

reverse proxy to route all incoming API requests to the appropriate microservices.

It provides a centralized entry point to the backend services, managing and

securing the API traffic.

- Redirection and Routing: Spring Cloud Gateway is configured to redirect all

API calls to the respective microservices. This centralization simplifies the

routing logic and provides a single point for managing requests.

- Pre-Authorization Check: Before redirecting requests, the API gateway

performs a crucial role in checking authorization privileges. It achieves this

by validating the received tokens through Keycloak, ensuring that only

authorized requests are processed.

Keycloak is utilized as the identity and access management service within the

project. It helps in managing all aspects of user authentication, authorization, and

identity management.

- User and Group Management: Keycloak stores all user credentials, user

groups, and their roles, providing a centralized store for managing user

identities.

- External Identity Providers: Keycloak supports integration with external

identity providers, allowing users to authenticate using various third-party

services such as Microsoft Entra ID or other OAuth-compliant identity

providers.

- Token Management: When a user attempts to access a secured endpoint,

Keycloak issues a JWT token upon successful authentication. This token

contains all the necessary user information and access privileges encoded

within it.

- Role-Based Access Control (RBAC): In.Grid DT implements RBAC to manage

access control, ensuring that users have appropriate permissions to access

various resources based on their assigned roles.

Implementation:

1. Authentication Flow:

- When a user attempts to access a resource, they are redirected to the login

page.

- Upon successful authentication, In.Grid DT issues an access token (JWT),

which is then used for subsequent requests to access the secured endpoints.

2. Authorization Flow:

- For every incoming API request, Spring Cloud Gateway intercepts the

request and extracts the token.

- The gateway consults Keycloak to validate the token and verify the user's

permissions.

 D5.3: Integration plan for Digital Twin on the platform

Page 20 of 28

Date: 31/03/2025

- If the token is valid and the user has the required permissions, the request

is routed to the respective microservice.

- If the token is invalid or the user lacks the necessary permissions, the

gateway denies access, ensuring that unauthorized requests are not

processed.

Advantages of combining Spring Cloud Gateway and Keycloak:

- Centralized Security Management: By leveraging Keycloak, we have a

unified solution for managing user identities, roles, and permissions across

the entire system.

- Scalability and Flexibility: The use of Spring Cloud Gateway allows for

scalable routing and handling of API requests, facilitating dynamic routing

and load balancing.

- Enhanced Security: The strict validation of tokens and enforcement of

access controls through RBAC ensure that the system remains secure and

only authorized users can access sensitive data.

- Ease of Integration: Both Spring Cloud Gateway and Keycloak are built to

work seamlessly with microservices architectures, simplifying integration

and configuration processes.

In conclusion, the combination of Spring Cloud Gateway and Keycloak provides a

robust and scalable solution for managing authentication and authorization,

ensuring secure access to the platform and to the backend services [4], [5], [6].

4.4.5 User interface
The user interface allows users to access the Digital Twin data and implements

authentication and role-based authorization with possibility of data export.

The Digital Twin user interface is based on Angular. The user interface has a side

menu where it is possible to select different sections of the application, each with

a specific functionality. All sections call the REST APIs made available by the

backend microservices that implement the business logic and process the

information.

From the dashboard (Figure 7) it is possible to navigate to the other sections of

the application as for the left side menu.

There are two main sections:

- Test summary

- Trends

The Test summary section (Figure 8) shows a list with the details of all the tests

that have been completed, running or started but waiting to be executed. It shows

for each test:

- Id: Progressive number of the test

- Type of test: Ex. Overcharge

 D5.3: Integration plan for Digital Twin on the platform

Page 21 of 28

Date: 31/03/2025

- Date: Scheduled date of test

- Progress: Current status of the test

- Action: It opens the detail of the single test

On the right side, the cumulative number of tests is shown based on the number

of tests performed per cell or module and based on their status.

By clicking on the button “Action” of a particular test, a popup will appear that will

show all the test details (Figure 9): Name, Type, Unit under test, UUID (Unique

identifier), test bench, current status, and the list of input and output variables.

The Trend section instead allows to show the results of completed tests or tests in

progress. In particular, by clicking on the "filter" button it is possible to select the

test to view the results of by searching for the test by name, type, unit under test

or by unique identifier (Figure 10) Finally, after selecting the test, the temporal

trend of the input and output variables is shown (Figure 11).

Figure 7 Digital Twin dashboard

 D5.3: Integration plan for Digital Twin on the platform

Page 22 of 28

Date: 31/03/2025

Figure 8 Test summary section

Figure 9 Test details section

 D5.3: Integration plan for Digital Twin on the platform

Page 23 of 28

Date: 31/03/2025

Figure 10 Test filter section

Figure 11 Trend chart section

4.4.6 Models Exchange Interface
The Model's Exchange Interface is designed to facilitate the efficient and secure

sharing of simulation files among consortium partners, adhering to the Functional

Mock-up Unit (FMU) standards. This interface ensures structured access control

and file organization. It is implemented as a containerized solution, deployed on

Comau's Kubernetes-based platform, guaranteeing scalability, security, and ease

of access for all project stakeholders (Figure 12).

 D5.3: Integration plan for Digital Twin on the platform

Page 24 of 28

Date: 31/03/2025

Figure 12 Models Exchange Interface Login

The Interface is developed in Go (Golang) and utilizes the standard net/http

package alongside Gorilla Mux for routing. The frontend is built with Vue.js,

providing a modern and responsive user interface. Communication is handled

through HTTP/HTTPS, with support for TLS encryption to ensure secure

connections. WebSockets facilitate real-time updates for file operations.

Authentication mechanisms include JWT-based authentication. File system

interactions rely on Go’s OS and IO packages, supporting local storage. Role-based

access control (RBAC) allows user permission management, with JSON-based

configurations to define access restrictions. A logger to monitor file activities will

not be implemented in the current setup, as access is limited to a small number of

project partners. However, logging capabilities will be considered and integrated

as the project scales and access requirements grow.

 To ensure data integrity and secure collaboration, WP3 and WP4 members are

granted full permissions, including read, write, and delete access, enabling active

contributions and updates to simulation files. Non-WP3 and WP4 members are

limited to read-only access, ensuring they can download and utilize simulation files

without altering the data (Figure 13).

i
Figure 13 User’s Management Interface

 D5.3: Integration plan for Digital Twin on the platform

Page 25 of 28

Date: 31/03/2025

The interface follows a systematic folder organization designed for easy navigation

and efficient file management. It comprises top-level folders dedicated to different

test categories, specifically WP3 - Performance and ageing Tests and WP4 - Safety

and Reliability Tests . Within each top-level folder, the structure further categorizes

tests based on the component level, including Cell, Module, and Pack.

Subsequently, it specifies the chemistry involved in the tests (Gen3b or solid-state

battery). After selecting the chemistry, the structure differentiates between

Physics-based Models and Data-driven Models.

Only after navigating through these layers are the FMU (Functional Mock-up Unit)

simulation files available. All FMU files within each test folder adhere strictly to a

structured naming convention (e.g., TestName_testVersion), providing clarity,

facilitating version control, and ensuring quick identification and retrieval (Figure

14). Given that the simulation files are relatively small (around 5 MB), no file size

limitations or performance constraints are expected when sharing the FMU files

Figure 14 Structured Folder Hierarchy

4.4.7 Test request handler
The Test Request Handler serves as a link between the Laboratory Information

Management System (LIMS), the Design of Experiments (DoE), and the Models

Management Module. Its main role is to enable the exchange of data while

managing the entire lifecycle of test requests.

The handler manages the reception and transmission of data. It processes

incoming requests from LIMS and forwards simulation and test procedure

specifications to the DoE for calculating optimal procedures. Once the DoE

processes the request, the handler receives the updated testing procedures and

communicates them to the co-simulation platform, initiating the test execution.

Implemented as a Python script, the handler complies with safety norms and

standards essential for data security and integrity. It is deployed within the same

Kubernetes containerized environment as the Models Exchange Interface,

promoting a cohesive and scalable solution.

Communication is facilitated using MQTT. The handler subscribes to a specific MQTT

topic (to be defined) to receive detailed information about the test the user intends

to execute. The structure of this message is outlined in D5.2. These specifications

 D5.3: Integration plan for Digital Twin on the platform

Page 26 of 28

Date: 31/03/2025

are then shared with the Models Management Module, which returns the

corresponding testing procedures. Additionally, the handler subscribes to another

MQTT topic (to be defined) to receive optimized procedures calculated by DoE.

Upon receiving the updated procedures, it transmits the data to the co-simulation

platform. The Models Management Module then determines whether the simulation

file requires transmission to the co-simulation platform. If it is needed, this will be

done using Safe File Transfer Protocol (SFTP).

All exchanged and processed data is systematically stored in the designated

database. The database's structure and schema are described in D5.2, ensuring

efficient data retrieval and maintaining data integrity.

4.4.8 Models Management
The Models Management component is designed to manage the simulation models

and testing procedures essential for accurate and efficient simulation workflows.

Implemented as a Python script, its primary role is to process test requests

received from the Laboratory Information Management System (LIMS) and

determine the corresponding simulations, models, and test procedures to be

executed based on the specific use case and Unit Under Test (UUT).

Upon receiving a test request, the script identifies and retrieves the appropriate

testing procedures from its managed repository. It also performs a verification

process to check if the latest version of a test has already been forwarded to the

co-simulation platform. If the test version has not been sent, the Models

Management component ensures that it is promptly forwarded to the Test Request

Handler for further processing.

 D5.3: Integration plan for Digital Twin on the platform

Page 27 of 28

Date: 31/03/2025

5. CONCLUSION
In summary, this document has provided a thorough overview of the Digital Twin

system architecture, detailing the implementation of its core components, the

application requirements, data pipeline, and integration processes necessary for

its deployment within the overall project platform (LIMS). By leveraging the data

management and communication architecture (deliverable D1.2), the Digital Twin

specifications (deliverable D1.3), the ontology (deliverable D5.1), and defined data

assets, we have established a solid foundation for the Digital Twin platform.

We have outlined the architecture as a Web-based platform hosted on the Cloud,

employing a microservice approach to ensure scalability and flexibility. The

utilization of Docker and Kubernetes for deploying microservices, along with MQTT

and REST API protocols for communication, demonstrates our commitment to

adopting industry standards and best practices.

The communication bridge between the Digital Twin platform and LIMS platform

facilitates seamless data exchange, ensuring that all components operate

harmoniously within the overall system. Furthermore, we have described the

implementation of various Digital Twin components, including the data collector,

user interface, analysis service, model management services, the models

exchange interface, the test request handler and the model's management

component highlighting their critical roles in achieving the project's goals.

As the project progresses, it is essential to remain adaptable to changes and

advancements. The need for potential modifications, adjustments, or new features

will be addressed proactively to ensure the system remains robust and capable of

meeting evolving requirements.

In conclusion, the Digital Twin system architecture presented in this document lays

the groundwork for a successful integration within the LIMS platform. By following

the outlined implementation plan and remaining responsive to ongoing

developments, a powerful and effective Digital Twin solution that will enhance the

project's outcomes and objectives will be delivered.

 D5.3: Integration plan for Digital Twin on the platform

Page 28 of 28

Date: 31/03/2025

6. REFERENCES

[1] «https://cloud.spring.io/spring-cloud-netflix/reference/html/,» [Online].

[2] «https://www.baeldung.com/spring-cloud-netflix-eureka,» [Online].

[3] «https://cloud.spring.io/spring-cloud-netflix/multi/multi_spring-cloud-

eureka-server.html,» [Online].

[4] «https://spring.io/projects/spring-cloud-gateway,» [Online].

[5] «https://www.baeldung.com/spring-cloud-gateway,» [Online].

[6] «https://www.keycloak.org/,» [Online].

