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Introduction

◼ Accurate and reliable state estimation for Lithium-Ion-Battery (LIB) cells can 

be achieved through successful parametrization of suitable LIB surrogate 

models [1].

◼ Nondestructive parametrization, e.g., based on measured current and 

voltage data, requires sophisticated approaches with high computational 

efforts for parameter evaluations, sensitivity analyses and optimized 

Design-of-Experiments (DoE) [2].

◼ Parametrized Neural Operators offer the potential to reduce these efforts by 

providing surrogate models that can be used more efficiently, e.g. in on-

board state estimation for electric vehicles, after a significant training effort.

Results

Surrogate Model Accuracy:

◼ Best result after training ~4 days on a NVIDIA A100: 𝟎. 𝟖% 𝐍𝐌𝐀𝐏𝐄𝐚𝐯𝐠
𝐬𝐮𝐫𝐟 

(avg. on 9 GRF profiles and 121 samples 𝑫𝒏, 𝑫𝒑 ∈ 10−15, 10−13 2)

◼ Extrapolation on unseen, application-specific current profiles with avg. 

inference time of 2.55 ms per profile 𝑰(𝒕) and diffusivity tuple 𝑫𝒏, 𝑫𝒑 :

◼ The choice of standard deviations 𝜎𝐴, 𝜎𝐵
𝐼  determine range of frequencies in 

the randomized Fourier-Features, cf. Fig. 2. A related study motivated by 

Fourier-Transform-Analysis on the different GRF profiles is presented in Tab.1.

Methodology

Single-Particle-Model:

◼ Partial Differential Equation (PDE) to describe

Li-concentration 𝑐𝑗 𝑟, 𝑡  in two spherically

symmetric particles for anode (j=n) 

and cathode (j=p):
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◼ Initial (IC) and Boundary Conditions (BCs):
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◼ Model parameters as characterized for a cylindrical LGM50 cell [3].

Physics-Informed Deep Operator Network (PI-DeepONet):

◼ Data-free training via minimization of PDE, IC and BC residuals

◼ Branch network: Encoding discretized current profiles (𝑰𝒕𝟎 , 𝑰𝒕𝟏, … 𝑰𝒕𝟔𝟎𝟎) that 

are generated from Gaussian Random Fields (GRF), cf. Fig. 2. 

◼ Trunk network: Encoding spatio-temporal and diffusivity domain (𝑟, 𝑡, 𝑫𝒏, 𝑫𝒑) 

Conclusion
—
PI-DeepONets offer potential for LIB surrogate modelling due to their fast 

inference times and extrapolation capabilities. Room for improvement 

remains in the (more) accurate approximation of high-frequency profiles 

and advanced architectures in branch and trunk networks for more 

efficient training.

See [4] for additional results on the application of PI-DeepONets for DoE.
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Figure 1: Single-Particle-Model.

Figure 2: Single-Particle-Model.

Error metric:

◼ Normalized-Mean-Absolute-Percentage-Error at particle surfaces computed 

with respect to a numerical reference solution obtained via Finite-Differences:
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1
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Figure 3: Surrogate model accuracy on three exemplary GRF profiles across diffusivity domain.

Figure 4: Extrapolation accuracy on two pulse profiles and a realistic driving profile derived from 
the Worldwide Harmonised Light Vehicles Test Procedure (WLTP) across diffusivity domain.

[𝝈𝑩
𝟏 , 𝝈𝑩

𝟐 , … ] Trunk [layers * nodes] # total param. 𝐍𝐌𝐀𝐏𝐄𝐚𝐯𝐠
𝐬𝐮𝐫𝐟

No Fourier-Features [5*200] 1,046,802 2.42%

[10] 2 * [5*150] 1,065,302 1.37%

[100] 2 * [5*150] 1,065,302 1.17%

[1000] 2 * [5*150] 1,065,302 1.47%

[10, 100] 3 * [5*120] 1,087,682 1.12%

[10, 1000] 3 * [5*120] 1,087,682 1.15%

[10, 100, 1000] 4 * [5*100] 1,086,402 1.11%

Table 1: Study on standard 

deviations 𝜎𝐵
𝑖  (with 𝜎𝐴 = 1) in 

temporal Fourier-Features, cf. 
Fig.2. Training iterations were 
halvened with respect to the 
results reported in Fig. 3 and 

Fig. 4 to maintain 
computational tractability.
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