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Motivation: 

• Difficulties in parameter identifiability of Lithium-Ion-Battery (LIB) surrogate 
models cause high expenses in time and cost for R&D and pose a challenge for 
on-board estimation of State-of-Health (SOH) or specific degradation modes.

• Design-of-Experiment (DoE) methodologies can improve parameter 
identifiability by maximizing the information provided by measurements, 
which can, e.g., be quantified via Fisher-Information-Matrices (FIMs).

Goals: 
• Evaluate Physics-Informed Deep Operator Networks as parametrized 

surrogate models for varying current profiles and diffusivity parameters.
• Demonstrate their accuracy and inference speed in approximating FIMs.

I. Introduction
Surrogate model accuracy:
• Comparison with reference solution from PyBaMM [2] via Normalized-Mean-

Absolute-Percentage-Error at particle surfaces and Root-Mean-Squared-Error 
on the resulting voltage response (𝑁𝑡 = 101):
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Accuracy for DoE based on FIM-Analysis:

• D-optimalities are approximated accurately and more efficiently via AD on 
the trained PI-DeepONet compared to the reference based on PyBaMM [2]:
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Conclusion:

Parametrized PI-DeepONets can be accurate and fast surrogate models with 
inference times in the order of milliseconds and offer further potential for DoE 
methodologies based on Fisher-Information. See [3] for more insights and 
implementation details.

  

• Integration of more realistic, high-frequency current profiles, variation of 
further (aging) parameters and a voltage-based FIM approximation.

• Demonstration of improved parameter and state estimation procedures 
based on PI-DeepONets and realistic application-specific voltage data.

Single-Particle-Model (SPM):

• Partial Differential Equation (PDE) to describe
Li-concentration 𝑐𝑗 𝑟, 𝑡  in two spherically

symmetric particles for anode (j=n) 
and cathode (j=p):
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• Initial (IC) and Boundary Conditions (BCs):
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• Voltage response via 

𝑉 𝑡 = 𝑈𝑝
OCP 𝑐𝑝(𝑅𝑝, 𝑡) − 𝑈𝑛

OCP 𝑐𝑛(𝑅𝑛, 𝑡) + 𝜂𝑟 𝑡 .

• Open-circuit-potentials 𝑈𝑗
OCP, overpotential 𝜂𝑟 and further parameters are 

assumed from a cylindrical 21700 cell (LGM50) characterized by Chen et al. [1].

Physics-Informed Deep Operator Network (PI-DeepONet):

• Data-free training via minimization of PDE, IC and BC residuals.

• Branch: Encoding discretized current profiles 𝑰(𝒕) describing three use cases: 
Constant current (CC), Gaussian Random Fields (GRF) and pulse profiles.

• Trunk: Encoding spatio-temporal domain (𝑟, 𝑡)  and diffusivity domain 
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DoE Framework:

• The FIM quantifies the information provided by a given experimental design 
𝑰(𝒕), e.g., for identifying parameters (𝑫𝒏, 𝑫𝒑) from the model response
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• The scalar “D-optimality” can be maximized for optimal experimental design:

Dopt 𝑫𝒏, 𝑫𝒑, 𝑰 = log det 𝐅𝐈𝐌 𝑫𝒏, 𝑫𝒑, 𝑰 .
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Figure 1: Single-Particle-Model.

Figure 4. Surrogate model accuracy at particle surfaces for three exemplary profiles and 

varying diffusivities 𝐷𝑛, 𝐷𝑝 ∈ {10−15, 10−14, 10−13}.

Figure 5: Local D-
optimalities for 100 
randomly generated 

GRF profiles (left) and 
three exemplary 

design candidates 
(right).

Figure 6: Comparison of global D-Optimalities throughout the parameter space.

Figure 3. Accuracy evolution during training of PI-DeepONets for different use cases 
averaged over multiple current profiles I(t) in each use case, cf. Fig. 2 – top left.

Training times are measured on a NVIDIA A100 GPU.

Figure 2: Parametrized PI-DeepONet for prediction of SPM solutions 
for varying current profiles (branch) and diffusivities (trunk).
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