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Project Abstract 

Current methods to evaluate Li-ion batteries safety, performance, reliability and 

lifetime represent a remarkable resource consumption for the overall battery R&D 

process. The time or number of tests required, the expensive equipment and a 

generalised trial-error approach are determining factors, together with a lack of 

understanding of the complex multiscale and multi-physics phenomena in the 

battery system. Besides, testing facilities are operated locally, meaning that data 

management is handled directly in the facility, and that experimentation is done 

on one test bench. 

The FASTEST project aims to develop and validate a fast-track testing platform 

able to deliver a strategy based on DOE and robust testing results, combining 

multi-scale and multi-physics virtual and physical testing. This will enable an 

accelerated battery system R&D and more reliable, safer and long-lasting battery 

system designs. The project’s prototype of a fast-track hybrid testing platform aims 

for a new holistic and interconnected approach. From a global test facility 

perspective, additional services like smart DoE algorithms, virtualised benches, 

and DT data are incorporated into the daily facility operation to reach a new level 

of efficiency. 

During the project, FASTEST consortium aims to develop up to TRL 6 the platform 

and its components: the optimal DOE strategies according to three different use 

cases (automotive, stationary, and off-road); two different cell chemistries, 3b and 

4 solid-state (oxide polymer electrolyte); the development of a complete set of 

physic-based and data driven models able to substitute physical characterisation 

experiments; and the overarching Digital Twin architecture managing the 

information flows, and the TRL6 proven and integrated prototype of the hybrid 

testing platform. 
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1. EXECUTIVE SUMMARY 
 

Deliverable D2.2, "Definition of battery system testing for automotive, off-road, 

and stationary use cases", contains the thorough results of WP2 in the FASTEST 

project, which aimed to specify the best testing procedures for three primary 

applications. This document provides an in-depth analysis of how to apply 

advanced concepts from Deliverable D2.1 with a comprehensive review of use-

case-specific boundary conditions and state-of-the-art DOE methodologies coupled 

with modern digital twin technologies. 

Establishing intelligent, use-case-specific ageing test procedures is the primary 

objective of this deliverable, which will expedite the battery development lifecycle 

and produce the most valuable and statistically significant data. This document 

offers thorough testing protocols for each use case by incorporating recent 

advancements in battery testing standards [1,2] and utilising cutting-edge DOE 

methodologies like Fisher Information Matrix (FIM) analysis, Response Surface 

Methodology (RSM), and Physics-Informed Neural Networks (PINNs) [3]. The 

integration of these state-of-the-art techniques enables a paradigm shift from 

traditional empirical testing approaches to intelligent, predictive testing 

methodologies that can significantly reduce development time and costs. 

For the automotive use case, a comprehensive weekly ageing cycle has been 

developed based on the WLTP standard [4]. Realistic yet accelerated test schedules 

that account for the state of the charging infrastructure and vehicle usage trends 

are included. The protocol addresses auxiliary load variations, thermal 

management considerations, and long-distance weekend travel scenarios as well 

as weekday commute patterns. The stationary storage approach uses normalised 

current profiles from grid service applications to meet the different operational 

requirements, including frequency control, peak shaving, and integration of 

renewable energy [5]. A protocol that uses high scenario predictability for off-road 

devices emphasises realistic cycling within predetermined operating windows, 

making it ideal for industrial applications like material handling equipment and 

AGVs [6]. 

This deliverable provides a comprehensive and transparent set of testing protocols 

and is a crucial component of the FASTEST hybrid testing platform. The vast 

virtualised testing capabilities enabled by these protocols, which aim to reduce 

testing time and costs by 20-30% while ensuring proper parameterisation and 

validation of virtual models, will support the project's ambitious goals. The 

framework represents a significant breakthrough in battery R&D procedures by 

seamlessly integrating virtual and physical testing methodologies through 

intelligent orchestration systems. 
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2. INTRODUCTION 

2.1. Context of the FASTEST Project 
Since Li-ion batteries are essential for reducing carbon emissions, testing their 

lifespan, performance, and safety requires a significant number of resources.  Tests 

take a long time, equipment is expensive, and a general trial-and-error approach 

all make the R&D process slower. The FASTEST project directly tackles these 

problems by creating a fast-track hybrid testing platform that combines physical 

and virtual testing in a way that is comprehensive and integrated. The project 

intends to speed up battery research and development by using intelligent DOE 

methodologies, multi-physics virtual models, and a DT architecture. This will lead 

to battery systems that are more reliable, safer, and last longer. 

 

2.2. Objectives of Deliverable 
D2.2 is a key outcome of WP2, specifically "Design of Experiments, boundary 

conditions, and methodologies."  The primary objective is to translate the 

theoretical DOE methods and use-case boundary conditions outlined in D2.1 into 

practical, enhanced approaches for evaluating battery systems [7]. 

The primary objectives of this document are to:  

• Establish the most effective and intelligent ageing test processes for each of 

the three project use cases: automotive, stationary energy storage, and off-

road mobile devices. 

• Explain how sophisticated DOE methods will be used in these procedures to 

cut down on testing time and costs while getting the most information 

possible for model parameterisation and validation [8]. 

• Compare the suggested steps to the specific goals of each use case and the 

main goals of the FASTEST project as a whole. 

• Explain how these described procedures will be used and managed as part 

of the larger FASTEST hybrid testing platform that is being built in WP6. 

D2.2 provides us with the test frameworks we need to achieve these goals. These 

frameworks will be used, evaluated, and integrated throughout the rest of the 

project to help build the hybrid testing platform. 

 

3. General Battery Testing Procedures 
The testing framework employs a systematic approach where system-level use 

case profiles are decomposed and adapted for lower-level component testing, 

ensuring consistency across all testing scales. For automotive applications, the 

complete WLTP-based weekly ageing cycle developed for pack-level testing 

provides the source material for cell and module-level test profiles. At the cell level, 

individual drive cycle segments are extracted from the complete weekly profile, 

with specific current and temperature conditions scaled to single-cell operation 

while maintaining the same stress characteristics. For instance, a highway driving 
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segment from the pack-level profile that operates at an average current of 0.5C 

becomes a cell-level test segment at the same 0.5C rate, but with thermal 

conditions adjusted for single-cell heat generation and dissipation characteristics. 

Module-level testing employs aggregated segments that represent the thermal and 

electrical interactions between multiple cells within a module assembly. The 

module-level profiles incorporate the same temporal patterns as the pack-level 

ageing cycle but account for current distribution effects, thermal gradients across 

cell arrays, and the influence of module-level thermal management systems. 

Temperature variations that occur naturally in pack-level operation due to cell 

positioning and cooling system design are replicated at the module level through 

controlled thermal cycling that matches the thermal stress patterns experienced 

in the complete system. 

This hierarchical approach ensures that parameters extracted from cell-level 

performance and safety testing directly inform module-level test conditions, which 

in turn scale appropriately to pack-level validation. The critical insight is that while 

ageing protocols are optimised primarily for pack and system-level operation 

where real-world usage patterns are most accurately represented, the underlying 

stress mechanisms that drive degradation operate consistently across all scales. 

It is essential first to establish a comprehensive set of generic characterisation 

tests that can be applied to battery cells regardless of their intended application, 

before developing use-case-specific ageing protocols. These standardised 

experiments, conducted at multiple temperatures (typically 15°C, 25°C, and 

45°C), provide the fundamental data required to understand cellular behaviour 

and establish initial parameters for the models developed in WP3 and WP4. The 

performance and safety tests selected for the FASTEST project represent the most 

critical characterisation procedures necessary for comprehensive battery 

evaluation. The detailed experimental procedures for these tests are specified in 

WP3 documentation. 

 

3.1. Tests of Performance 
• Preconditioning Test: This test establishes a consistent starting point for 

all cells by charging them to their maximum specified voltage, then 

discharging them to a predefined State of Charge (SOC) and allowing them 

to stabilise. 

• Capacity Test: This test measures the charge capacity of a cell by charging 

it to its maximum voltage and then discharging it at a steady current rate 

until it reaches the manufacturer's cut-off voltage. 

• OCV-SOC Test (Charge and Discharge): The Open Circuit Voltage (OCV) 

is mapped to the SOC by charging or discharging the cell in small steps and 

measuring the stabilised voltage at different SOC levels after letting it rest. 

Many battery models and BMS algorithms depend on this relationship. 

• Hybrid Pulse Power Characterisation (HPPC) Test: This test checks the 

battery's power capability, such as its internal resistance and dynamic 

voltage response, by sending a series of short charge and discharge high-

current pulses at varied SOC levels. 
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• Thermal Test: This test thoroughly describes how the cell behaves 

thermally by monitoring its temperature at various locations while 

subjecting it to different working conditions and controlled heating and 

cooling rates. 

 

3.2. Safety Tests 
Safety testing is crucial for ensuring that batteries can withstand abuse or faults 

and still meet the stringent safety standards of their intended use. These tests are 

done on both the cell and the module. 

• Tests at the Cell Level:  

o Overcharge Test: Tests how the battery reacts when it is charged 

over its maximum rated voltage. 

o Forced Discharge Test: Checks the cell's integrity when it is 

discharged at rates higher than the allowed rate. 

o Internal and External Short Circuit Tests: These tests simulate 

short circuits to assess the effectiveness of the safety features. 

o Thermal Abuse Tests (Extreme Heat, Thermal Cycling): Subject 

the battery to extreme temperatures and rapid temperature changes 

to assess its thermal stability and management systems. 

• Module Level Tests: 

o Failure of Cooling System Test: This test simulates a cooling 

system failure to see how well the module can stop thermal runaway. 

o Test for Resistance to Moisture: Checks how well the module seals 

and protects against water and humidity from entering. 

o Internal Fire Test: Checks to see if the module can keep an internal 

fire from spreading. 

o High-Rate Charge Test: Checks to see if it is safe to charge the 

module at currents higher than the regular rate.  

 

4. Design of Experiments Methodology 

4.1. Fundamentals of DOE in Battery Testing 
Design of Experiments is a methodical approach to understanding the relationships 

between various factors that influence battery performance and lifespan. It enables 

efficient exploration of multidimensional parameter spaces while minimising 

experimental effort and maximising information extraction [40]. In the context of 

FASTEST, DOE methods enable intelligent experimental design that extends 

beyond the conventional one-factor-at-a-time approach, providing a 

comprehensive understanding of how factors interact and identifying the optimal 

conditions for running the experiment. 

When you use DOE to test batteries, you can account for the fact that battery 

systems are naturally complex because many factors simultaneously affect 

performance, degradation, and safety. Traditional testing methods often fail to 
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capture these interactions effectively, making it more difficult to understand how 

the system works and wasting testing resources. Classical DOE methods, such as 

factorial designs, enable you to systematically examine different combinations of 

factors to identify significant main effects and interactions. Fractional factorial 

experiments, on the other hand, let you quickly screen a lot of possible factors 

with less experimental effort. 

Response Surface Methodology builds on basic factorial methods by providing 

mathematical models that illustrate the relationship between input factors and 

response variables in continuous design spaces. Central Composite Design (CCD) 

and Box-Behnken designs facilitate optimisation studies that identify the optimal 

operating conditions and provide a quantitative understanding of how sensitive 

factors interact with each other. These methods are beneficial for testing batteries 

because they allow you to continuously change operational parameters, such as 

temperature, current rate, and state of charge windows, instead of only at specific 

levels. 

Statistical analysis frameworks, such as Analysis of Variance (ANOVA), provide 

rigorous methods for determining the significance of factor effects and the 

uncertainty associated with experimental results. Regression modelling lets you 

create mathematical relationships that can be used to make predictions within the 

experimental design space. Confidence interval estimation provides numerical 

measures of uncertainty that are crucial for making informed decisions and 

assessing risk. Residual analysis and cross-validation are two methods for verifying 

that the models we create yield reliable predictions and identifying any issues with 

the models or outliers in the data. 

Multi-response optimisation techniques address the common problem in battery 

testing of having to consider more than one conflicting goal simultaneously. 

Desirability function approaches help identify operating conditions that meet 

acceptable performance standards across multiple criteria. Pareto frontier analysis, 

on the other hand, helps make decisions when perfect solutions aren't available by 

showing the trade-offs between competing goals. These methods are significant 

for batteries, where performance, lifetime, safety, and cost goals must be carefully 

balanced. 

 

4.2. Model-Based Design of Experiments 
Advanced model-based DOE methods use existing knowledge and models to 

improve experimental designs so that they get the most information possible. This 

is a big step forward from traditional empirical DOE methods [9]. The Fisher 

Information Matrix (FIM) provides a numerical measure of how easily parameters 

can be identified for a specific experimental design. This lets researchers improve 

test protocols to get the most accurate parameter estimates in physics-based 

battery models. 

The relationship FIM(θ) = E [(∇θ log L(θ)) T (∇θ log L(θ))] is the mathematical basis 

for FIM-based design optimisation. Here, L(θ) is the likelihood function for the 

parameter vector θ. You can make the best designs by maximising the determinant 
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of the FIM (D-optimality), minimising the trace of the inverse FIM (A-optimality), 

or minimising the maximum eigenvalue of the inverse FIM (E-optimality). 

Depending on the goals of the parameter estimation problem, each criterion has 

its own set of benefits. 

Using FIM-based optimisation for battery testing enables the creation of current 

and temperature profiles that provide the most information about specific model 

parameters essential to us. This method makes sure that experimental work 

focusses on operating conditions that make parameters most sensitive, instead of 

areas where model response is less sensitive to changes in parameters. The result 

is testing that is more efficient, achieving the required level of parameter accuracy 

with less experimental work, or, on the other hand, obtaining higher parameter 

accuracy for the same amount of experimental effort. 

Bayesian experimental design is another step forward that uses what we already 

know about parameter values and uncertainties to improve the optimisation 

process. Bayesian parameter estimation frameworks can use prior knowledge by 

changing the probability distributions of parameters based on experimental 

evidence. Sequential design optimisation lets you use adaptive testing strategies, 

where each new experiment is planned based on the results of all the previous 

ones. This method is beneficial for testing batteries because there is usually some 

information available from earlier tests or research about how batteries behave 

electrochemically. 

Optimal control theory applications go beyond model-based design to include 

dynamic optimisation of test profiles for getting the most information. This makes 

it possible to create current and temperature profiles that change over time and 

are optimised to give the most information while staying within realistic limits on 

the rate of change, maximum values, and total energy throughput. Techniques for 

multi-objective optimisation can find the best solutions that are both informative 

and easy to put into practice by weighing the amount of information against 

practical factors like the length of the test and the limitations of the equipment. 

 

4.3. Digital Twin Integration 
Digital Twin technology enables you to continuously update models and run 

predictive tests on them throughout the battery's life. This represents a significant 

shift from static models to dynamic, evolving digital representations that improve 

with use [10]. Digital Twin ideas and DOE methods work well together to make 

both experimental design and model validation and improvement more effective. 

Digital Twin systems can enhance the accuracy of their models and update 

parameter estimates by continuously incorporating new experimental data in real-

time. Recursive algorithms, such as extended Kalman filtering, make it easy to 

update model parameters when new data become available. Model structure 

adaptation algorithms can also modify the complexity of a model based on how it 

has been observed to degrade or on new phenomena that have been discovered. 

Uncertainty propagation through model hierarchies ensures that uncertainties in 

parameters are accounted for at all levels of the system model, from the 
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electrochemical models of individual cells to the predictions of how well the entire 

system will function. 

One of the most effective applications of Digital Twin technology is virtual testing. 

With this technology, high-fidelity physics-based models can simulate experiments 

in virtual environments for significantly less money and time than they would in 

real life. For applications where speed is critical, reduced-order models enable the 

simulation and optimisation of systems in real time. Monte Carlo simulation, on 

the other hand, provides a comprehensive picture of uncertainty by considering 

both parameter and model structure uncertainties. Sensitivity analysis tools make 

it easy to find essential parameters and operating conditions quickly, which helps 

with both optimising experimental design and assessing risk. 

Hybrid testing strategies adjust the workload between physical and virtual tests 

based on cost-benefit optimisation, considering model confidence, information 

value, and resource constraints. The Digital Twin framework enables real-time 

decision-making about whether specific experiments should be conducted in 

person or online, based on the accuracy of the current model and the expected 

information gain from each method. Risk-based testing prioritisation ensures that 

physical testing resources are focused on high-risk situations where model 

confidence is low or the potential outcomes are unfavourable. Virtual testing, on 

the other hand, addresses routine situations where model accuracy has already 

been established. 

By continually verifying the accuracy of the virtual model, we can ensure that the 

transition from physical to virtual testing maintains the same level of accuracy 

throughout the testing program. Cross-validation with separate datasets allows 

you to assess how well the model predicts outcomes continually. Automated model 

performance monitoring identifies instances where the model's accuracy may have 

declined, indicating that additional physical testing may be necessary. This method 

ensures that the testing program remains as efficient as possible while also 

guaranteeing that accuracy standards are consistently met during the battery 

development process. 

 

5. Optimal Battery System Testing Procedures 
The central part of the FASTEST project is to run use-case-specific ageing tests 

that are meant to mimic real-world long-term use. These tests are in addition to 

the generic characterisation tests [11]. This section explains how to apply 

advanced DOE methods to combine the unique boundary conditions of each of the 

three use cases with the most effective testing processes [12]. The goal is to 

design test protocols that are not only accurate but also highly effective, allowing 

for the collection of data on degradation and longevity to occur more quickly. 
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5.1. Automotive Use Case 

5.1.1. Objective 
The primary objective of the automotive use case is to accurately assess and 

estimate the battery system's long-term durability, performance degradation, and 

lifetime under real-world driving and charging conditions.  The process needs to 

be improved over the old, time-consuming ageing campaigns by employing an 

innovative, faster testing strategy that provides a wealth of data to validate the 

physics-based and data-driven models developed in WP3 and WP4. 

5.1.2. Optimal Aging Test Procedure 
The Worldwide Harmonised Light Vehicles Test Procedure (WLTP) is the basis for 

the ageing test. This ensures that it aligns with how vehicles are used in real life 

today. A comprehensive weekly itinerary that mimics a typical user's routine, 

including daily commutes and extended weekend trips, has been created to 

generate a complete and accelerated ageing profile. This routine will be followed 

until the battery reaches its End of Life (EOL), typically at 70–80% of its original 

capacity. 

The weekly ageing cycle has five working days (Monday to Friday) and an overnight 

charge that simulates charging at home. 

o Morning Commute: A 30-minute profile (To_work_profile) that includes 

city driving (based on WLTP) and highway travel (80–120 km). 

o Daytime Charge: This feature makes it feel like you're charging at work. 

o Evening commute: A 30-minute mirrored profile (From_work_profile) for 

the route back. 

o Evening Charge: Makes you feel like you're charging at home again. 

 

 

Figure 1 - Work profile cycle example 
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Weekend (Saturday and Sunday, once):  

o Long Trip with Fast Charge: a multi-part trip that simulates a weekend 

break, including city and interstate driving phases and a fast-charging event 

in between.  

o A Brief Local Trip: A 20-minute trip to the city is provided to demonstrate 

how people conduct errands in the area. 

o Return Trip with Quick Charge: The return trip is the same as the 

outgoing trip, with a quick charge available before arriving home. 

o Final charge at home overnight. 

 
Figure 2 - Weekend cycle example 

 

Tables 1 and 2 show a full schedule with start and end times.  

Monday to Friday Start time End time 

Charge at home 0:00 8:00 

Going to work 8:00 8:30 

Charge at work 8:30 17:30 

Return from work 17:30 18:00 

Charge at home 18:00 0:00 

Table 1 - Working Days Schedule for Automotive Use Case Aging Test 

Saturday Start time End time Sunday Start time End time 

Charge at 

home 

0:00 8:00 Stay at 

Long Trip 

with Fast 

Charge 

0:00 9:00 
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Long Trip 

with Fast 

Charge 

8:00 12:00 A Brief 

Local Trip 

9:00 9:20 

Stay at 

Long Trip 

with Fast 

Charge 

12:00 0:00 Stay A 

Brief Local 

Trip 

9:20 15:20 

   Return 

home 

15:20 19:20 

   Charge at 

home 

19:20 0:00 

Table 2 - Weekend Schedule for Automotive Use Case Aging Test 

Periodic characterization tests (e.g., Capacity, HPPC) will be performed at set 

intervals (e.g., every 100 cycles) to track the degradation of key performance 

indicators. 

5.1.3. Application of DOE for Optimization 
We will use several DOE methods to make this testing process "smart" and "best": 

1. Model-Based DOE for Parameter Estimation: The primary purpose of 

the ageing test is to obtain high-quality data for the parameterisation and 

validation of the advanced models from WP3 and WP4. A model-based DOE 

technique will be utilised instead of a fixed, pre-defined test matrix. We will 

use the Fisher Information Matrix (FIM) to assess the uniqueness of 

parameter identification for the test profiles we have. The FIM analysis helps 

identify the areas of the test cycle that provide the most information 

regarding specific deterioration parameters. 

FIM(U,θ)=∂θ∂f(U,θ)⊤∂θ∂f(U,θ) 

We ensure that the trials are set up to make the model parameters as 

straightforward as possible by optimising the test profile to achieve the 

highest determinant of the FIM (D-optimality). This lowers uncertainty and 

the need for repeated testing. 

2. The Response Surface Methodology (RSM): Key stressors, such as air 

temperature and the use of auxiliary systems like air conditioning, have a 

significant impact on how quickly batteries age. We will use RSM to examine 

how these aspects impact things efficiently. Instead of testing at multiple 

temperature points, a CCD or similar device will be used to create a response 

surface. This will let us simulate how things age across a wide range of 

situations with fewer experiments. 

3. Physics-Informed Neural Networks (PINNs)1: PINNs and PI-

DeepONets will be examined as surrogate models to accelerate the DOE 

 
1 Raissi, M., Perdikaris, P., & Karniadakis, G. (2019). Physics-informed neural networks: A 

deep learning framework for solving forward and inverse problems involving nonlinear 
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process significantly. You can quickly forecast how a battery will act in 

different situations by training these networks on a mix of outputs from 

physics-based models and sparse physical test data. This makes it possible 

to perform the DOE optimisation cycle (like FIM optimisation) in milliseconds 

instead of hours. This enables a testing strategy that is genuinely dynamic 

and adaptive, where the next test point is chosen in near real-time based 

on all prior results. 

 

5.1.4. Evaluation 
This optimised testing process directly works towards the goal of lowering time 

and expense. The data is accurate because a thorough, realistic weekly cycle is 

used. Model-based DOE eliminates unnecessary experiments and focuses 

experimental effort on the circumstances that yield the most helpful information. 

The project's goal of reducing development time and costs by 20–30% is achieved 

by utilising DOE to create an accelerated ageing profile and replacing some physical 

tests with validated virtual models. This reduces the overall time to reach EOL in 

the lab significantly compared to simple calendar or cycle ageing tests. The process 

gives us the high-quality data we need to create and test the TRL6 hybrid testing 

platform. 

5.2. Stationary Energy Storage Use Case 

5.2.1. Objective 
The primary goal of the stationary energy storage use case is to evaluate the 

performance and longevity of batteries in scenarios similar to those encountered 

in real-world grid applications.  Because client needs and uses can be quite 

different, the testing process needs to be flexible and able to demonstrate multiple 

ways of working, such as stabilising the grid, reducing peaks, or integrating with 

renewable energy sources. 

5.2.2. Optimal Aging Test Procedure 
There is no single standardised test process for stationary storage systems, such 

as the WLTP, which is used for cars. For this use case, the ageing tests will be 

based on a normalised current profile derived from trustworthy industry standards 

and data sources. 

 
partial differential equations. Journal of Computational Physics, 378, 686-707. 

https://doi.org/10.1016/j.jcp.2018.10.045 
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Figure 3 - Energy storage profile cycle example 

The suggested method is as follows: 

1. Profile Design: A 24-hour current profile will comprise several parts. This 

profile will have sections for critical stationary applications: 

o Long-duration cycles: This means storing renewable energy (such as 

solar) during the day and releasing it during the busiest hours of the 

evening. 

o Intermittent, partial cycles: These are similar to demand-response 

events or frequency regulation services, which involve quick, shallow 

charges and discharges. 

o Moments when nothing happens (rest): These are moments when 

nothing happens. 

 

2. Testing situations: 

o Temperature Variability: Tests will be conducted at various temperatures 

to simulate how the storage system will be affected by different weather 

conditions. 

o Cycling: The 24-hour profile will keep repeating itself. 

o EOL Criteria: The EOL criterion isn't as strict as it is in the case of cars. A 

conventional benchmark is for capacity to drop to 70–80%; however, 

stationary applications may need various things. The test will keep going 

until there is a noticeable drop in performance. This lets you change things 

up based on the application being modelled. 
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3. Periodic Characterisation: Standard performance tests (Capacity, HPPC) 

will be conducted regularly to monitor how degradation changes over time.  

5.2.3. Application of DOE for Optimization 
To generate a normalised profile that is both accurate and useful, DOE methods 

are necessary: 

1. Screening Designs: Initially, a factorial or screening design will be utilised 

to identify the most significant stress elements for stationary applications. The 

depth of discharge (DOD) of the long cycles, the frequency and amplitude of the 

partial cycles, and the average temperature could all be factors. 

2. Best Mixture Design: The 24-hour profile can be thought of as a "mixture" 

of various work approaches. You can utilise DOE methods for mixing experiments 

to find the ideal amount of each type of cycle (long-duration, partial, rest) to 

include in the normalised profile, thereby best representing a target application 

or creating an ageing test that is typically harsh but realistic. 

3. Model-Based Optimisation: As in the car scenario, the test technique will 

be used in conjunction with the physics-based models from WP3. We will use the 

FIM-based method to ensure that the profile we generate has sufficient 

information to appropriately set the parameters for degradation models specific 

to stationary use, such as those that account for calendar ageing during prolonged 

periods of rest and cycle ageing during active use. 

5.2.4. Evaluation 
Even without a global standard, this method lets you consistently and reliably test 

the endurance of batteries for stationary use. Using DOE to create the normalised 

current profile ensures that the test is focused on the most critical stress elements 

and doesn't waste time evaluating situations that aren't harmful. This specialised 

technique provides a more accurate assessment of how long these specific 

applications will last and accelerates the ageing process compared to simple, 

repetitive cycling. This helps reduce development time and costs. The method can 

be applied in various ways to cater to the diverse needs of customers in the 

stationary storage sector. 

5.3. Off-Road Mobile Devices Use Case 

5.3.1. Objective 
The primary objective of the off-road use case is to deliver a personalised ageing 

protocol that leverages the application's predictable usage patterns to accurately 

and efficiently predict the battery's lifespan.  The primary focus is on industrial 

equipment, such as Laser-Guided Vehicles (LGVs) and Automated Guided Vehicles 

(AGVs), which often have regular and repetitive work cycles. 

5.3.2. Optimal Aging Test Procedure 
There is no one standard protocol for off-road devices, just like there isn't one for 

fixed storage. The main difference, though, is that the scenarios are very 

predictable, which makes the ageing test easier to understand and more accurate. 

The suggested test method is based on usage statistics and has the following: 
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1. Current Profile: The profile features constant-current charge and discharge 

cycles that switch back and forth regularly, much like an AGV starts and stops, 

charges, and operates. Figure 1 shows an example of a load profile. 

Figure 1 shows an example load profile for a big off-road mobile device.  

 
Figure 4 - AGV cycle profile example 

 

2. The conditions for testing: 

o Small SOC Window: One crucial aspect of these AGVs is that they typically 

only work within a minimal SOC range, usually between 70% and 80% SOC, 

to maximise their cycle life. 

o Temperature Variability: The temperature changes are fewer than in 

cars, as the system operates in regulated indoor situations that are easy to 

forecast. The test will examine a range that is u.       seful but not too wide, 

such as 25°C to 35°C. 

3. EOL Criteria: The EOL criteria are based on the standard IEC 62620:2014, 

which stipulates that after 500 cycles, the battery should still retain 60% of its 

rated capacity and its internal resistance should be less than twice its initial value 

after 2000 cycles. 

5.3.3. Application of DOE for Optimization 
Even with a simple, repeating cycle, DOE is quite important for making the test as 

accurate and efficient as possible: 

1. Factorial Design: A factorial design will be employed to investigate the 

impact of key parameters on lifetime in a controlled manner within a limited range 

of operations. The factors will be the exact SOC window (for example, 70–80% 

vs. 65–75%), the C-rate of charge and discharge, and the room temperature. 

2. RSM for Lifetime Modelling: The results of the factorial experiment will 

be utilised to create a Response Surface Model (RSM) that shows how these 

factors affect battery life. This model will enable the quick forecasting of the 

lifetime of any set of conditions within the tested range. This will reduce the need 

for lengthy physical tests for each new variant of the usage profile. 

3. Model-Based Acceleration: The experimental data will be utilised to set 

the parameters and check the ageing models from WP3. Once the models have 

been checked, they can be used to anticipate degradation far beyond the cycles 
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that were tested. This significantly speeds up the process of determining when 

the EOL criterion will be satisfied. 

5.3.4. Evaluation 
By leveraging the specific and predictable characteristics of the off-road use case, 

this method creates a highly effective and tailored testing regimen. The approach 

utilises DOE to accurately estimate how critical elements affect the specific 

operational window, thereby reducing the number of physical tests that need to be 

conducted.  The FASTEST project's primary goals are fulfilled by using a 

combination of targeted physical testing and verified virtual models to quickly and 

cost-effectively certify battery lifetime against industry standards, such as IEC 

62620:2014. 

6. Integration into the FASTEST Hybrid Testing Platform 
The best testing processes for this deliverable are not meant to be done alone. 

They are essential components of the entire hybrid testing platform being 

developed in WP6. For these procedures to be effective, they must integrate well 

with the other key technologies in the FASTEST project. 

o The LIMS (Laboratory Inventory Management System) is the central 

part of the WP6 platform that will handle the running of various test 

processes. It will handle scheduling tests, assigning resources (both physical 

and virtual test benches), and maintaining a record of all test-related data 

and settings. 

o Digital Twin (WP5): A digital twin will be created for each Unit Under Test 

(UUT), serving as the primary source of information. Before a test starts, 

the LIMS will retrieve all the necessary information from the DT, including 

the battery's history, its current state, and relevant virtual models. As the 

tests are run, all new data, whether it comes from real-life measurements 

or virtual simulations, will be given back to the DT. This will continue to add 

to the virtual model of the battery. 

o Virtual Benches (WP3 and WP4): The methods depend on tests being 

virtualised. The strategy controlled by the DOE will dynamically choose 

whether a particular test point should be done on a physical bench or a 

virtual bench (by executing the verified models from WP3 and WP4). This 

sensible mix of real and virtual testing is the best way to save money and 

time. 

o Automatic Task Distribution (WP2 & WP6): The DOE methods for each 

use case will be turned into a "smart algorithm service" that works with the 

LIMS. This service will assess the test requirements and the current state of 

the models (through the DT) to automatically create the optimal test plan, 

ensuring that tasks are distributed evenly across the available physical and 

virtual resources. 

 

The platform's design enables you to utilise advanced resource optimisation 

strategies, helping you strike a balance between goals such as reducing costs, 

enhancing testing accuracy, using resources more efficiently, and maximising your 
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time. Real-time decision algorithms consider the advantages and disadvantages of 

both physical and virtual testing at every stage of the experiment. They consider 

factors such as their level of certainty about the model, the amount of information 

they anticipate receiving, the resources available to them, and the cost of each 

choice. This dynamic optimisation ensures that physical testing resources are only 

used on experiments that are worth a significant amount of money when virtual 

models are uncertain. Virtual execution makes it easy and quick to do routine tests. 

When you combine data from different parts of the platform, you obtain 

comprehensive datasets that can be utilised for both short-term testing decisions 

and long-term tasks, such as building and testing models. The platform keeps a 

record of all past data. This illustrates the process by which the data is transformed 

from raw sensor readings to processed and analysed data, and then to the final 

test results and model updates. Advanced data analytics tools identify patterns 

and trends that facilitate both short-term testing optimisation and long-term 

strategic decisions regarding how to prioritise model development and testing 

methods.  

The platform consists of various components, making it easy to add or remove 

features at different testing sites and utilise the existing testing infrastructure. You 

can modify existing facilities or add new testing capabilities to them. If the software 

systems and testing tools from different companies have standardised interfaces, 

you can use them together. Cloud-based parts enable you to do more with features 

like testing and analysing data. You can change the platform to fit the needs of 

different organisations, but you can still use the same testing methods and data 

quality standards. 

 

6. Validation and Performance Metrics 
The validation framework for the FASTEST testing platform features multiple levels 

of testing to ensure that the methods created meet both technical performance 

standards and the requirements of real-world deployment. By verifying the 

accuracy of each model and the precision of parameter identification, component-

level validation ensures that each part of the testing system functions correctly 

and reliably. It achieves this by employing statistical methods, such as cross-

validation with separate datasets, parameter sensitivity analysis, uncertainty 

quantification, and significance testing for model parameters. 

System-level validation checks how well the entire platform functions from start to 

finish. It achieves this by employing various methods, including comparison studies 

that demonstrate the effectiveness of hybrid testing methods, and real-world 

application case studies that compare laboratory predictions with field data. Long-

term performance monitoring continually assesses the effectiveness of testing 

methods and seeks ways to enhance both the speed and accuracy of testing. 

Key Performance Indicators (KPIs) are metrics that measure the effectiveness of 

a platform in various areas. Efficiency metrics aim to reduce testing time by 30–

40% compared to traditional methods. They employ detailed measurement 

methods that separate physical test time from virtual simulation time, taking into 
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account quality factors to ensure that accuracy is maintained or improved while 

reducing testing time. A comprehensive review of the costs of equipment, staff 

time, consumables, and infrastructure is necessary to achieve a 20% to 30% cost 

reduction. We accomplish this by examining the cost of creating a platform and 

the savings it generates when people utilise it more effectively. 

Some of the goals for making better use of resources are to schedule and allocate 

resources so that physical test equipment is used more than 80% of the time, to 

have virtual test capacity that can support more than 1,000 parallel simulations, 

to use less than 50% of the energy that regular testing uses, and to automate 

more than 90% of the routine test execution tasks. These metrics ensure that the 

platform enables faster testing while maintaining high-quality standards and 

allowing more tests to run concurrently. 

Quality metrics assess the accuracy and precision requirements that ensure the 

platform delivers results that can be trusted and used to inform business 

deployment decisions. In all cases, model prediction accuracy targets need to be 

at least 95% correlated with physical test results. On the other hand, the 

uncertainties for critical degradation parameters must be less than 5% for accurate 

parameter estimation. Repeatability standards state that tests performed again 

should not differ by more than 2%. Tests done in different labs using the same 

method should not vary by more than 5%, according to the rules for 

reproducibility. 

Metrics for reliability and robustness ensure that the platform works consistently 

and reliably, making it suitable for business use. System uptime goals say that the 

system should be available more than 99% of the time during business hours. With 

fault tolerance, the system can fix itself for more than 95% of problems. Data 

integrity requirements ensure that all data is kept safe and that the testing process 

can be fully tracked. Robustness standards demonstrate that the system performs 

effectively with various types of tests and equipment. 

Benchmarking studies confirm platform performance by comparing it to standard 

testing methods using the same battery samples, employing statistical analysis to 

measure the improvements made by hybrid testing methods, and conducting a 

comprehensive analysis of the time and cost required to obtain the same 

information. Industry benchmarking involves collaborating with top battery testing 

labs, participating in round-robin testing programs, and comparing performance 

to commercial testing solutions to identify further improvements and demonstrate 

competitive advantages. 

Case study validation programs demonstrate the effectiveness of a platform in the 

real world by collaborating with automotive OEMs to compare fleet testing data, 

utility companies to conduct field demonstration projects with stationary storage, 

and industrial equipment manufacturers to assess the operational environment. 

These case studies demonstrate that predictions made in the lab are accurate when 

compared to real-world applications, that economic models are accurate when 

evaluated against operational cost data, and that processes for verifying 

compliance with regulations are effective for commercial deployment. 
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The whole validation framework ensures that the FASTEST platform makes testing 

faster and more effective in measurable ways, while still being accurate and 

dependable enough for use in commercial battery development. The methods we 

developed will help accelerate the development and application of batteries in 

various situations, as they have been tested in real-world scenarios and from both 

economic and technical perspectives. 

 

7. Conclusion 
This deliverable has successfully created thorough best practices for testing battery 

systems in cars, stationary energy storage, and off-road settings. This represents 

a significant step forward in battery research and development, addressing some 

of the most pressing challenges currently faced by the battery industry. The work 

shown here takes theoretical DOE principles and use-case requirements from D2.1 

and turns them into real-world testing protocols that are the basis for the FASTEST 

hybrid testing platform. This demonstrates how new digital technologies can be 

integrated with advanced experimental design to transform the way batteries are 

tested. 

The testing protocols that were developed successfully combine advanced DOE 

methods, such as Fisher Information Matrix analysis, Response Surface 

Methodology, and Physics-Informed Neural Networks, to create innovative, flexible 

testing strategies that gather the most information while using the least amount 

of time and money. The full weekly ageing cycle, based on WLTP standards, 

provides realistic yet sped-up testing scenarios for cars that consider modern 

charging infrastructure capabilities, various usage patterns, and environmental 

changes, all while meeting regulatory requirements. The stationary energy storage 

method addresses the issues with grid service applications by utilising normalised 

current profiles to illustrate the unpredictability of grid demands and by regularly 

testing battery performance in various grid integration scenarios. 

The off-road application protocol leverages the predictability of industrial use 

patterns to develop testing procedures that are highly effective for both equipment 

manufacturers and operators. This demonstrates how specific features of a use 

case can be leveraged to maximise testing coverage without compromising 

accuracy or reliability. Combining digital twin technology with model-based 

experimental design represents a significant step away from traditional empirical 

testing methods and toward intelligent, predictive testing methods that improve 

with experience, allowing testing resources to be utilised more efficiently in real-

time. 

The entire validation framework ensures that the results of virtual testing remain 

sufficient for applications where safety is crucial. It also meets the goal of reducing 

development time and costs by 20–30% compared to traditional testing methods. 

The hierarchical testing framework does a good job of linking characterising 

components at the component level with validating the whole system. It maintains 

accuracy and relevance at all levels of the system hierarchy while ensuring that 

parameters flow smoothly across testing scales. 
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The advanced DOE implementation enables you to efficiently explore 

multidimensional parameter spaces while reducing the work required for 

experiments by intelligently designing them to focus resources on operating 

conditions that yield the most information. When you combine machine learning 

with traditional electrochemical modelling, you can make better predictions and 

improve models over time with real-world data. This helps both in improving tests 

in the short term and in planning how to improve them in the long term. 

The testing protocols were designed with clear goals in mind for industrial use, 

adhering to established rules, and allowing for growth in size for commercial 

applications. This means that the methods created can be effectively applied in 

various types of organisations without compromising the quality and consistency 

of the tests. The framework is compatible with multiple battery chemistries and 

applications, and it continues to meet current standards and certification 

processes. This means that it is possible to add new testing capabilities to existing 

testing facilities or build new ones. 

The economic analysis shows that early adopters will benefit. It also demonstrates 

how technology transfer programs, standardisation activities, and collaborative 

development initiatives can contribute to the industry's overall transformation. The 

established testing protocols provide the FASTEST hybrid testing platform with a 

strong foundation for further development and validation in subsequent work 

packages. The platform has a modular design and standardised interfaces, which 

means that new battery technologies and applications can be added in the future. 

Working with businesses and government agencies ensures that the methods 

created are helpful and can be applied more quickly. The thorough documentation 

and validation process also helps with both quick implementation and longer-term 

standardisation efforts. With these improved protocols, the FASTEST project is 

well-positioned to achieve its significant goals of transforming how batteries are 

tested. By taking a complete approach to creating, testing, and combining testing 

methods, it will do this. This will make battery systems that are more reliable, 

safer, and last longer. 

D2.2 represents a significant advancement in the field of battery testing. It sets 

the stage for new research and development methods that will accelerate the 

creation of more efficient energy storage solutions for a carbon-neutral future. By 

utilising advanced experimental design, digital twin technology, and intelligent 

resource optimisation to their fullest extent, new avenues for accelerating battery 

development can be explored while maintaining the accuracy and reliability 

required for safety-critical commercial use. 
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