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Abstract

This paper introduces PyBEP, a Python-based tool for the automated and optimized se-
lection of open-circuit potential (OCP) curves and calculation of stoichiometric cycling
ranges for lithium-ion battery electrodes based on open-circuit voltage (OCV) measure-
ments. Thereby, it overcomes key challenges in traditional approaches, which are often
time-intensive and susceptible to errors due to manual curve digitization, data incon-
sistency, and coding complexities. The originality of PyBEP arises from the systematic
integration of automated electrode chemistry identification, quality-controlled database
usage, refinement of the results using incremental capacity methodology, and simultaneous
optimization of multiple electrode parameters. The PyBEP database leverages high-quality,
curated OCP data and employs differential evolution optimization for precise OCP determi-
nation. Validation against literature data and experimental results confirms the robustness
and accuracy of PyBEP, consistently achieving precision of 10 mV or better. PyBEP also
offers features like electrode chemical composition identification and quality enhancement
of measurement data, further extending the battery modeling functionalities without the
need for battery disassembly. PyBEP is open-source and accessible on GitHub, providing a
streamlined, accurate resource for the battery research community, making PyBEP a unique
and directly applicable toolkit for electrochemical researchers and engineers.

Keywords: lithium-ion batteries; open circuit voltage; electrode potentials; electrode
stoichiometric ranges; open source python package

1. Introduction
Lithium-ion batteries (LIBs) are one of the key technologies for green transportation,

the green energy sector and industrial applications. Because of this, LIBs are the subject of
extensive research, with the aim being to improve their energy density, power density, and
battery lifetime, as well as safety.

One of the very important aspects of LIB research involves modeling at various
levels. Fundamental mechanisms of chemical energy storage are explored using first-
principle and molecular dynamics models on an atomistic scale [1,2]. On a higher scale,
continuum models play a key role in virtual prototyping and design space exploration
when developing battery cells for specific applications, e.g., [3–5]. System-level continuum
models are also employed for predicting and controlling battery cells during operation,
e.g., [6–8], or for analyzing and deciphering EIS spectra, e.g., [9].

Despite the distinct nature of these model families, they share a common prerequisite:
the accuracy and predictive capability of models critically depends on the quality of model
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input parameters. Therefore, the precise determination of input parameters of the model
significantly influences the suitability and applicability of the model.

This paper focuses on the determination of arguably one of the most crucial parameters,
especially in higher-scale models—open-circuit potential (OCP) of the electrode. The
fundamental physico-chemical significance of the OCP makes this parameter indispensable
for many types of models, ranging from basic nanoscopic simulations to battery pack
system-level simulations.

To successfully parameterize such battery models, it is essential to determine OCP
characteristics of both electrodes, which comprise the following:

• The functional dependence of OCPs as the function of the amount of intercalated
lithium for both electrode materials (hereafter referred to as OCP curves).

• The stoichiometric ranges of lithium within which both electrodes are cycled (hereafter
referred to as stoichiometry ranges).

In this context, stoichiometry represents the amount of lithium intercalated in the
electrode, expressed as a molar fraction (e.g., x in LixC6 for the lithiated graphite anode or
x in LixNi3/4Mn1/8Co1/8O2 for the NMC cathode). The stoichiometry range corresponds
to the range of lithium content over which the battery is cycled during operation, defined
by the upper and lower cut-off voltages.

The precise experimental determination of both, i.e., OCP curves and stoichiometry
ranges, is usually quite complex, requiring battery disassembly [10]. When a complex,
time-consuming and expensive procedure of cell disassembly is not an option, it is possible
to estimate OCPs of both electrodes from the measurement of the battery’s open-circuit
voltage (OCV) as a function of the state of charge (SOC). This procedure requires knowing
the availability of accurate OCP curve data, which are available in the literature for widely
used material, e.g., [11,12], and adequate numerical methods.

One such method for decomposing battery OCV into the OCPs of both electrodes,
including the determination of the corresponding stoichiometry ranges, is presented in [13].
The method relies on the availability of accurate OCP data. Although the approach of deter-
mining OCP curves and stoichiometry ranges using measured OCP data and a numerical
method is less complex and requires less effort compared to the rigorous experimental
determination of OCPs, it remains time-consuming and, in many cases, insufficiently pre-
cise for the intended application, as well as being prone to several challenges. One of the
challenges, when utilizing method proposed in reference [13], is the selection of adequate
OCP curves. Chemical composition of the electrodes is often unknown to the battery user;
hence, selection of adequate OCP curves might result in a lengthy trial-and-error process
prone to errors. Additionally, the quality of literature data on OCP curves is often not
adequate for detailed numerical analyses, which can undermine the effectiveness of the
methods described in [13]. Frequently, the datasets are derived by manual digitization
of OCP curves from images, necessitating quality enhancement through post-processing
interpolation. If not done carefully, this can introduce physico-chemical inconsistencies
into the data. Moreover, the process of coding the optimization algorithm itself is complex
and time-consuming as well. It, therefore, turns out that listed challenges can lead to errors,
which accumulate and ultimately compromise the accuracy of the determined OCP curves
and stoichiometric ranges, making them unreliable and potentially also misleading. These
challenges can be overcome by automatizing and optimizing the entire procedure, which
significantly reduces efforts of a user along with potential user-induced errors.

In this context, we introduce PyBEP, an open-source Python-based tool that innova-
tively addresses these challenges by automating the full workflow of OCP curve selection
and stoichiometric range determination from simple battery OCV measurements.
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A variety of open-source software tools exist for modeling, simulating, and analyz-
ing lithium-ion battery behavior. Among the most widely recognized is PyBaMM [14],
which provides a flexible framework for solving physics-based battery models such as
the Doyle–Fuller–Newman (DFN), Single-Particle Model (SPM), and their variants. Tools
like battsimpy [15] offer implementations of these models with a focus on modularity
or high-resolution numerical schemes. Equivalent circuit-based modeling is enabled by
packages such as PyECN [16], while specialized methods for electrochemical impedance
analysis are implemented in extensions like PyBaMM-EIS [17]. On the data-driven side,
machine learning-based approaches such as PINN4SOH [18] and MambaLithium [19] have
emerged for state estimation and health diagnostics. Complementary to Python-based tools,
the Julia ecosystem also features high-performance libraries, including PETLION.jl [20]
and JuBat [21] for P2D modeling and LiiBRA.jl [22] for reduced-order modeling.

Several tools specifically address model parameterisation, such as PyBOP [23], which
facilitates the estimation of full parameter sets for DFN, SPM, or equivalent circuit mod-
els. However, PyBOP does not include functionality for deriving electrode open-circuit
potentials (OCPs), which remain essential for accurate parametrization. Similarly, the
LiionDB [24] database provides curated OCP curves for various electrode materials, but
it does not guide users in selecting the optimal combination of OCPs for a given battery
cell—a decision that can significantly impact model fidelity. The software presented in this
work—PyBEP—targets this critical gap. It enables the automated and accurate extraction of
electrode OCPs and stoichiometric ranges from OCV measurements, thereby complement-
ing both PyBOP and simulation frameworks. As such, PyBEP does not replicate existing
simulation or parameterisation capabilities but instead enhances them by providing a
robust and automated mechanism for selecting appropriate electrode curves, which are
indispensable inputs for models built using tools like PyBaMM, PETLION.jl, or any other
DFN-, SPM-, or P2D-based approach.

In addition to its compatibility with open-source modeling tools, PyBEP is also highly
applicable in workflows involving commercial battery simulation and diagnostic platforms
such as COMSOL Multiphysics [25], AVL CRUISE M [26], and ALAWA [27]. These tools
often rely on accurate OCP inputs for defining material models, performing incremental
capacity analysis, or tuning electrochemical diagnostics. PyBEP provides a streamlined
and automated method to obtain these.

PyBEP combines simultaneous selection of OCP curves from a database and the deter-
mination of stoichiometry ranges. The database was created using data available from the
literature on OCP curves and by applying tailored digitalisation methods to comply with
quality criteria to adequately determine the OCP characteristics of both electrodes. Another
important feature of the tool is its capability to automatically select most appropriate OCP
curves from the database. The proposed approach, therefore, resolves multiple method-
ological challenges related to the unambiguous determination of OCP characteristics of
both electrodes of the Li-ion battery solely from the battery OCV measurement, with no
need to disassemble the battery or code complex optimization algorithms.

The digital tool we used for the automated selection of OCP curves and the calculation
of stoichiometric ranges of both electrodes of a Li-ion battery from OCV measurements
is named PyBEP, and it requires only measured data of battery OCV vs. battery SOC to
perform the following steps:

• Select appropriate OCP curves from the database corresponding to the chemical
composition of both electrodes.

• Calculate stoichiometric cycling ranges for both electrodes.

• Calculate incremental capacity ( dQ
dV , i.e., the inverse of the OCV derivative with respect

to the charge) of both electrodes for refining results.
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Moreover, it delivers OCP curves of both electrodes aligned with the measured SOC
range of the battery with high precision and reliability.

While the underlying concepts of OCV decomposition are established, the originality
of PyBEP lies in its systematic integration of automated electrode chemistry identification,
quality-controlled database usage, refinement of the results using incremental capacity
methodology, and simultaneous optimization of multiple electrode parameters. Valida-
tion against benchmarks and experimental measurements from the literature confirms the
typical precision on the order of a few millivolts, making PyBEP a unique and directly ap-
plicable toolkit for electrochemical researchers and engineers. Beyond lithium-ion batteries,
the modular structure and data-driven nature of PyBEP also offer promising applicability
to other electrochemical energy storage systems, such as lithium-ion capacitors, which
could benefit from automated OCP curve analysis and stoichiometric range determination.

Through this contribution, PyBEP enables researchers and engineers to perform high-
accuracy analyses with significantly reduced experimental and computational efforts. The
PyBEP (Python Battery Electrode Potential calculator) Python package is openly accessible
on GitHub (https://github.com/JonPisek/PyBEP), together with a graphical user interface
that simplifies the use of presented package.

2. Methods
The PyBEP package features two main pillars, which comprise the database and

the numerical procedure for the automated selection of open-circuit potential curves and
calculation of stoichiometric ranges. Each of these comprises several methodological steps,
which are crucial for obtaining accurate battery electrode potentials. The flow of these
methodological steps, which make automated and efficient execution of the PyBEP possible,
is illustrated in Figure 1.

Figure 1. Flowchart illustrating the PyBEP package. The left side of the figure depicts the database
creation process, while the right side outlines the optimization algorithm. Parameters e, f, g, and
h, which are determined during the optimization procedure, correspond to the lower and upper
stoichiometric limits of the anode (e and f) and cathode (g and h). The standard root mean square
deviation (RMSD) is used as the cost function for optimization. The optimization algorithm combines
differential evolution with the Nelder–Mead method. Each step shown in the figure is described in
detail later in the text.

https://github.com/JonPisek/PyBEP
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The following subsections describe the key steps outlined in Figure 1 in detail.

2.1. Database Creation

The effectiveness of the PyBEP tool depends on the availability of a robust database of
OCP curves, requiring a large quantity of digitized electrode OCP data. These curves are
essential for the optimization process. The database creation procedure is schematically
represented on the left side of Figure 1, highlighted in blue. The individual steps involved
in this process are described below.

2.1.1. Literature Data

Literature data were used to build the PyBEP database of OCP curves. The LiionDB
database [28,29] served as guidance for the literature search; however, it was not feasible
to use the LiionDB open-source database directly within PyBEP, as the quality of its data
varies significantly. In the current version of PyBEP, OCP curves have been incorporated
from the following references: [30–35].

2.1.2. Data Curation and Adaptation

All the data from the literature offering the most reliable OCP measurements were
found without corresponding digital datasets. Therefore, data points had to be manually
extracted from images using a process known as curve digitization. SolidWorks (2024
version) was used for this task, as it provided fine control over interpolation. In this process,
the image was imported into a SolidWorks part file, and spline curves were manually
traced over the original plot. Points were then added along the spline, and a new part file
was created, containing only the sketch with these points. This part file was saved as an IGS
file and subsequently converted into a text file (TXT) containing the x and y coordinates of
each point.

The TXT file was then imported into Python (version 3.12.3), where a densely popu-
lated and highly accurate digitized curve was generated using the interp1d function from
the scipy.interpolate library. This function was used for both interpolation and extrapo-
lation. For anode OCPs, extrapolation was applied in the high-SOC direction, covering an
additional 10% of the original SOC range. For cathode OCPs, extrapolation was applied in
both directions (low and high SOC), each extending 10% beyond the original SOC range.
This extrapolation was added to improve the stability of the optimization algorithm that
determines stoichiometry limits, as described in Section 2.2.

The final output of this procedure was a series of TXT files, each containing two
columns with 1000 entries. The first column represents the normalized lithiation level of
the electrode material, and the second column outlines the corresponding electric potential
vs. Li/Li+ at each lithiation level. Before these files—representing the OCP curves—were
stored in the PyBEP database, their integrity was verified.

2.1.3. Data Integrity Check

Following the data curation and adaptation steps (Section 2.1.2), the quality of each
dataset was assessed to ensure accurate and reliable results. Only data of sufficiently high
quality were retained in the final PyBEP database. The selection focused on curves with
favorable numerical properties, particularly those capable of producing a well-defined
incremental capacity curve (also referred to as dQ/dV).

Even if an OCP curve appears smooth, the calculation of the incremental capacity can
introduce significant noise. This is due to the fact that incremental capacity is defined as the
inverse of the derivative of the OCP curve with respect to the lithiation level. Both numerical
differentiation and inversion are highly sensitive to small irregularities in discretized data.
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Because incremental capacity is essential for determining stoichiometric ranges in
PyBEP, only those OCP curves that produced smooth, continuous dQ/dV curves were
considered suitable.

To distinguish between acceptable and unacceptable datasets, a specific quality crite-
rion was developed. The second derivative of the capacity curve with respect to voltage—
denoted d2Q/dV2—was computed from the discrete dQ/dV values. This second derivative
approximates the difference between adjacent points in the dQ/dV curve. The standard
deviation (σ) of the d2Q/dV2 values was calculated and compared to the extreme values
within the same dataset. If either the maximum or minimum value deviated by more than
4 × σ from the mean, this indicated the presence of a discontinuity or sharp jump in the
dQ/dV curve. Such datasets were deemed unsuitable for inclusion in the PyBEP database.
This procedure is illustrated in Figure 2.

Figure 2. (a) Cathode OCP digitized from reference [9] with high precision. (b) Incremental capacity
(dQ/dV) calculated from (a). (c) Second derivative (d2Q/dV2) calculated from (a). (d) Cathode OCP
digitized from reference [9] with low precision. (e) Incremental capacity (dQ/dV) calculated from (d).
(f) Second derivative (d2Q/dV2) calculated from (d).

Figure 2 shows two attempts to digitize the cathode OCP curve from reference [9],
each using 50 data points. The left column of the figure (Figure 2a–c) illustrates a successful
digitization, where the resulting d2Q/dV2 satisfies the criterion for inclusion in the PyBEP
database. The extrema of d2Q/dV2 lie within the 4× σ region, as clearly shown in Figure 2c.
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In contrast, the right column (Figure 2d–f) displays an unsuccessful attempt at digi-
tization. In this case, the extrema of d2Q/dV2 fall far outside the 4 × σ range. Although
the digitized OCP curves themselves (Figure 2a,d) appear nearly identical to the naked
eye, making the differences visually indistinguishable, the shortcomings of the digitization
procedure become clearly evident in the derived dQ/dV and d2Q/dV2 curves—shown in
Figure 2b,c,e,f—following the interpolation step.

2.1.4. PyBEP Database

The OCP curves included in the PyBEP database are available through the PyBEP pack-
age GitHub repository (https://github.com/JonPisek/PyBEP). The open-source database
is set up in way that it is easily extendable with OCP data from the community. In cases
where data quality is uncertain, users are encouraged to contact the package developers.

2.2. Automated Selection of Open-Circuit Potential Curves and Calculation of
Stoichiometric Ranges

Unlike the database creation process, which is performed only once by the PyBEP
developers, the automated selection of open-circuit potential curves and calculation of
stoichiometric ranges is automatically executed each time a user wishes to determine these
parameters from the measured OCV curve using PyBEP. This methodology is the core
component of the PyBEP package. The methodology utilizes the differential evolution [36]
optimization algorithm, implemented via the differential_evolution function from the
Python library scipy.optimize. Differential evolution was selected as it is well-suited for
finding the global minimum of discontinuous, multidimensional cost functions, which is the
challenge encountered when determining optimal battery OCPs from OCV data, utilizing
the OCP curves’ database. In addition to differential evolution, users have the option to
apply the Nelder–Mead (Amoeba) optimization algorithm after differential evolution is
completed, further refining the result to accurately locate the minimum.

The methodology for automated selection of open-circuit potential curves and cal-
culation of stoichiometric ranges simultaneously searches for the most adequate OCP
curves from the database and the corresponding stoichiometric ranges that best fit the
given measured OCV. To accomplish this efficiently, the algorithm is designed as a wrapper
around several subroutines, which are described in the following subsections. This struc-
ture is graphically represented in Figure 1, where this methodological step is depicted in
light orange.

2.2.1. Selecting Both OCP Curves from the Database

In the first step of the methodology for automated selection of open-circuit potential
curves and calculation of stoichiometric ranges, two OCP curves are selected from the
database—one for the cathode and one for the anode. In the initial iteration, this selection is
random. In subsequent iterations, the selection follows the differential evolution algorithm,
as described in detail in [36]. These two selected OCP curves are represented as two-
dimensional arrays with 1000 rows and two columns each. For clarity, the selected cathode
and anode OCP curves will be denoted as OCPc and OCPa, respectively.

2.2.2. Determination of the Stoichiometric Ranges

In the second step of each of the iterations of the proposed methodology, stoichio-
metric ranges for the selected OCP curves are determined. Four parameters, denoted
as e, f , g, and h, are used for this purpose. Parameters e and f represent the lower and
upper stoichiometric limits for the cathode, while g and h represent the lower and upper
stoichiometric limits for the anode. The significance of these parameters is illustrated in

https://github.com/JonPisek/PyBEP
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Figure 2 of reference [13], where the methodology for determining stoichiometric ranges,
now automated in PyBEP, was first introduced.

The stoichiometric range limits—parameters e, f , g, and h—are selected in each
optimization iteration according to the differential evolution algorithm [36].

Once the values of e, f , g, and h are selected, the corresponding sections of OCPc

and OCPa (from Section 2.2.1) are truncated to span the normalized stoichiometry ranges
defined by e- f for the cathode and g-h for the anode (OCPc[e:f] and OCPa[g:h] in Python
syntax). These truncated arrays are then interpolated and evaluated at 1000 points across
the normalized stoichiometry range, now representing the state of charge (SOC) of the
battery. The resulting arrays are denoted as OCPSOC

c and OCPSOC
a , where the superscript

“SOC” indicates that the initial OCP curves have been transformed to the battery SOC range.

2.2.3. OCV Calculation

In the third step of the optimization iteration, the battery’s OCV is calculated using the
interpolated OCP curves from the previous step. The OCV is determined by subtracting
the anode potential from the cathode potential, as shown in Equation (1):

OCVc = OCPSOC
c − OCPSOC

a (1)

It is important to note that the OCV (SOC) dependency calculated at this stage is only
an estimate of the final OCV proposed by the optimization algorithm. Due to the vast
number of possible parameter combinations, the calculated OCVc might not be accurate
in the early iterations, while it improves toward a final converged solution during the
optimization process. To evaluate the accuracy of the calculated OCVc, a cost function is
applied, as described in the following subsection.

2.2.4. RMSD Calculation

The root mean square deviation (RMSD) is used as the cost function to estimate how
close the optimization algorithm is to the desired result at each iteration. RMSD is calculated
from the difference between the calculated OCVc and the measured OCV, denoted as OCVm.
It is at this stage that the algorithm first encounters the user-provided measured OCVm,
which the PyBEP package aims to use for the automated selection of open-circuit potential
curves and calculation of stoichiometric ranges. The measured OCV is a two-dimensional
array with two columns and 1000 rows, where the first column represents the battery SOC
and the second column represents the corresponding measured OCV.

The RMSD calculation is inspired by methodologies discussed in reference [13], which
describe various approaches to determining optimal OCPs from OCVm. PyBEP combines
two of the most promising methods that complement its optimization routine. The first
method calculates the simple difference between OCVc and OCVm, providing a measure of
how far the calculated result deviates from the measured data [13]. The second method,
first introduced in [13] and implemented in PyBEP, compares the incremental capacities
(dQ/dV) of OCVc and OCVm. Peaks in the dQ/dV function correspond to plateaus in the
OCV curves and can serve as distinct markers for determining the stoichiometric ranges
of battery electrodes [13]. The final RMSD function is a weighted combination of both
methods, as shown in Equation (2):

RMSD = P

√
∑(OCVc − OCVm)2

N
+ (1 − P)

√
∑(dQc/dV − dQm/dV)2

N
, (2)

where

dQc/dV =

(
dOCVc

dSOC

)−1
,
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dQm/dV =

(
dOCVm

dSOC

)−1
,

N is the number of data points in the OCV arrays (1000 by default), ∑ represents summation
across the array, and P is a user-adjustable weighting factor that determines the relative
influence of the two methods on the final result. P allows users to prioritize either the incre-
mental capacity comparison or the direct OCV difference. It serves as a tuning parameter
for the users, since both methods are not necessarily equally efficient in every case.

2.2.5. Convergence Criterion

The methodology for the automated selection of open-circuit potential curves and
calculation of stoichiometric ranges iterates through the steps outlined above until the
convergence criterion is met. The criterion used is standard for the differential evolution
algorithm: the procedure halts when the RMSD for all agents in the population differs by
less than 10−6. This condition ensures, with high probability, that the optimization has
converged near the global minimum, corresponding to the optimal OCPs for the measured
battery. Once the convergence criterion is satisfied and the differential evolution algorithm
terminates, the Nelder–Mead (Amoeba) optimization algorithm is applied to refine the
result and ensure the precise location of the minimum. The final result is returned as two
two-dimensional arrays (2 × 1000), representing the potential dependencies on SOC for
both electrodes of the tested battery. The entire optimization procedure typically converges
within a minute on a modern AMD or Intel processor.

2.3. OCV Measurements

The only input required from the user for PyBEP to return electrode potentials is the
measured battery OCV (OCVm). These data should be provided as an array with two
columns: the first containing the battery SOC and the second containing the corresponding
OCV. The number of rows (data points) in the provided measurement is flexible, as PyBEP
automatically performs interpolation on the user-provided data prior to optimization to
ensure the correct format. However, high-precision measurements are recommended to
achieve optimal results with the PyBEP package.

The experimental procedure used to determine the OCV curves in the Results Section 3
is outlined below. Although this does not limit the use of any other method, it makes it
possible for us to obtain accurate OCV data considering the specifics of battery chemistry.
A GITT (galvanostatic intermittent titration technique) experiment was first performed on
the battery, consisting of twenty 1C (C = amperage/battery capacity) charge and discharge
pulses, each altering the battery SOC by 5%. The rest periods between the current pulses
lasted 5 h, except for the three pulses at the lowest battery voltages, where overpoten-
tials are highest. For these three pulses, the rest periods lasted 10 h during both charge
and discharge.

Following the GITT experiment, the battery was fully discharged and allowed to rest
at a constant voltage corresponding to 0% SOC, as per the battery specifications. After a
long rest period (20 h), the battery was slowly charged and discharged at a C/100 current
rate. The final OCV curve was determined as the average of the 40 data points obtained
from the GITT experiment and the central average of the narrow hysteresis observed during
the C/100 charge and discharge cycle.

3. Results
The results obtained using the PyBEP package demonstrate its functionality and

accuracy. To validate both aspects, we conducted an analysis using reliable data from
the literature [31]. In [31], the authors reported measurements of the OCV curve versus
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the state of charge (SOC—normalized percentage of battery remaining charge between
0 and 1), as well as measurements of both OCP curves for the cathode and anode. They
measured the OCV of the full cell they assembled in their laboratory using a C/30 charge–
discharge cycle. To obtain accurate OCPs of both electrodes, they performed the same
measurement on two half-cells assembled separately from the cathode and anode materials.
We digitized the data for the OCP curves from this paper and incorporated them into
the database of the presented tool. Subsequently, PyBEP methodology was applied on
the digitized measurements of the OCV from the same reference [31]. Out of all OCP
curves in the database, PyBEP selected OCP curves digitized from the same reference [31]
as the best candidates to replicate the OCV curve, which confirms its robustness and
applicability. Furthermore, the PyBEP successfully calculated cell stoichiometric cycling
ranges that matched exceptionally well with those reported in the original paper [31].
Figure 3 illustrates the results of the optimization process.
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Figure 3. Validation of PyBEP functionality and accuracy. The red line represents the measured battery
OCV from the reference source [31]. The green and blue lines indicate the electrode OCPs determined
by the PyBEP tool. Through optimization, the PyBEP tool selected, from an extensive database, the
two curves digitized from the same reference [31] where the OCPs were explicitly measured.

Excellent agreement between the measured and optimized OCV curve is evident in
Figure 3.

Next, we conducted our own measurement on commercial lithium-ion battery with an
NMC cathode and graphite anode. The OCV dependence on state of charge was measured
as described in Section 2.3. The measured OCV curves were utilized to test the capability
of PyBEP to identify the chemistry of the given battery. The determination of electrode
chemistry was successful, along with the determination of cell stoichiometric cycling ranges.
The results are presented in Figure 4a. In Figure 4b, the corresponding root mean square
deviation (RMSD) between the measured and calculated OCV curves is shown. The average
RMSD is 3.36 mV, which is close to the OCV measurement precision, demonstrating the
exceptional precision of the PyBEP.
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Figure 4. (a) Results of electrode OCP determination from the measured OCV. The red line represents
the OCV curve measured on a commercial 18650 Li-ion battery. The blue and green lines show
the optimized OCP curves for the battery. The dashed blue line indicates the final calculated OCV
obtained from the optimization procedure. (b) Absolute difference between the measured OCV curve
and the calculated OCV curve, obtained as the difference between the determined OCP curves. The
average absolute difference is 3.36 mV.

To demonstrate the efficiency of PyBEP (Figures 3 and 4), cells with NMC811 and
graphite electrodes were deliberately selected—not only because this chemistry is among
the most commonly used in commercial batteries today but also because the OCV curve
of NMC811/graphite cells has a distinctive shape that is immediately recognizable to
experts in the field. Two prominent regions with a reduced slope appear in the OCV curve
between SOC 0.10–0.15 and 0.30–0.45 (Figures 3 and 4). These correspond to the first two
plateaus in the graphite OCP curve, resulting from the phase-separating nature of graphite.
Additionally, a characteristic bump appears around SOC 0.85, originating from the cathode
due to the higher redox activity of NMC811 in this region. Notably, this feature is unique to
NMC811 among NMC chemistries and does not appear in other compositions at high SOC.
PyBEP successfully identified all of these features and, based on them, correctly determined
the electrode chemistry. In this test case, we used the parameter p = 1, meaning that PyBEP
accounted only for the differences between OCV curves in the optimization cost function,
without including the incremental capacity. Nevertheless, the results were highly accurate.

In the next part of the Results Section, we present two additional test cases involving
chemistries that are more challenging to optimize precisely due to the lack of distinct fea-
tures in their OCV curves. The first case involves an NMC532/graphite cell (Figure 5), and
the second an LFP/graphite cell (Figure 6). The OCVs of the NMC532/graphite cell were
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measured in our laboratory using the same procedure as the one described in Section 2.3
and the measurement data for the LFP/graphite cell were taken from reference [37].
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Figure 5. Demonstration of PyBEP efficiency on a battery cell with an NMC523 cathode and graphite
anode. RMSD, in this case, was 8.61 mV.
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Figure 6. Demonstration of PyBEP efficiency on a battery cell with an LFP cathode and graphite
anode. RMSD, in this case, was 10.20 mV.
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4. Conclusions
This paper introduces PyBEP, a robust and automated tool for the selection of open-

circuit potential curves and precise calculation of stoichiometric ranges, achieving accuracy
within the ten millivolt range.

The PyBEP package provides users with several valuable features based on measured
battery OCV curves:

• Determination of electrode chemical composition.
• Calculation of electrode stoichiometric ranges.
• Analysis of the dependence of electrode open-circuit potential on SOC.
• Enhancement of low-accuracy measurements of battery OCV.

The robustness and accuracy of PyBEP are proven by validation against experimen-
tal results, confirming a precision of approximately 10 mV or better. These high levels
of robustness, automatization, accuracy and user friendliness are arise from the follow-
ing original contributions of the PyBEP: systematic integration of automated electrode
chemistry identification, quality-controlled database usage, refinement of the results using
incremental capacity methodology, and simultaneous optimization of multiple electrode
parameters.

The open-source tool, PyBEP, is available on our GitHub page https://github.
com/JonPisek/PyBEP, where users can access detailed instructions and a user-friendly
graphical interface.
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