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Abstract

Accurate parameter estimation in lithium-ion battery models such as the Single-Particle-Model
(SPM) enables accurate state estimation in lithium-ion batteries but is often hindered by a lack of
parameter identifiability under certain operating conditions. This paper presents a parametrized
physics-informed deep operator network (PI-DeepONet) that is trained to predict solutions of the
SPM for various current profiles and varying electrochemical parameters such as diffusivities, ac-
tive material volume fractions and stoichiometric limits with an average Root-Mean-Squared-Error
(RMSE) in voltage responses below 1 mV — even when extrapolating to unseen drive cycles. Based
on this result, an iterative parameter estimation algorithm is proposed that combines global opti-
mal experimental design, local identifiability analysis, and the differential evolution algorithm, and
only becomes computationally tractable by exploiting the inference speed and differentiability of
PI-DeepONet. The proposed algorithm recovers a synthetic ground truth for seven degradation-
related parameters with an averaged percentage error of 3.4 % and offers a speedup factor of 265 on
a standard processor and more than 30,000 on a state-of-the-art graphics processor compared to a
finite-difference approach based on the reference solver PyBaMM. This result paves the way for more
wholistic and reliable state estimation algorithms for lithium-ion batteries.

1 Introduction

Accurate State-of-Health (SOH) estimation in lithium-ion batteries (LIB) is essential for predicting re-
maining useful life, preventing unexpected failures, and ensuring safe and reliable operation in various
applications from electric vehicles to energy storage systems [II, [2]. To tackle this, several modeling ap-
proaches have been introduced, from lightweight Equivalent Circuit Models (ECM), to the physics-based
Single Particle Model (SPM), its electrolyte-enhanced version (SPMe), and the Doyle-Fuller-Newman
(DFN) model, each offering a certain trade-off between numerical simplicity and electrochemical fi-
delity [3, [, [B]. Previous works have shown that SOH and specific degradation modes such as Loss-of-
Active-Material (LAM) or Loss-of-Lithium-Inventory (LLI) can be correlated with the change in model
parameters like stoichiometries at 0 % and 100 % State-of-Charge (SOC), active material volume frac-
tions or the Open-Circuit-Voltage (OCV) [6, [7, [8, @]. However, estimating such parameters in practice
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can be difficult, as measurable quantities such as cell voltage or temperature may yield little to no infor-
mation about these parameters under certain operating conditions. In [I0], Andersson et al. have given
a thorough review on parameter estimation from “input-output data” in battery models, concluding
that wholistic procedures are needed that cover various aspects such as sensitivity and identifiability
analyses, optimal design of experiments (DoE), and suitable optimization methods. More specifically,
they emphasize that many of these methods are commonly applied only locally in parameter space, i.e.,
right at or close to some ground truth values of the considered parameters, which makes results diffi-
cult to compare, especially when dealing with non-linear models. This problem is amplified by varying
assumptions on the chosen model, the considered range of parameters and applied current profiles and
causes a lack of robust methods that can easily be applied to new scenarios with different operating con-
ditions or other assumptions. Global approaches on sensitivity analysis and experimental design address
these issues by analyzing the parameter space more rigorously and are starting to gain more traction
in context of LIB model parametrization [I1], 12] [3]. However, these approaches require significantly
more computational efforts, which generally hinders their direct applicability for parameter estimation
in realistic environments like Battery-Management-Systems (BMS).

The advancements of Machine-Learning (ML) and, more recently, Physics-Informed Neural Networks
(PINN) have shown a lot of potential to reduce the computational efforts in classical simulations due to
their generalizability and high inference speed after training [14}, [I5]. While the canonical PINN approach
is trained to approximate individual solutions to a given partial differential equation (PDE), the addition
of PDE parameters as explicit inputs to the network yields parametrized PINNs that approximate a
family of PDE solutions [16]. Similarly, the concept of Operator Learning aims at the approximation of
operators, i.e., mappings between function spaces, and has been tackled in a physics-informed manner via
the notions of Physics-Informed Deep Operator Networks (PI-DeepONet) and Physics-Informed Neural
Operators (PINO) [I77, [I§]. Input functions for Operator Learning are commonly tailored to represent
application-specific boundary or initial conditions [19,[20]. In the context of LIB models, the applicability
of PINNs has been shown for the ECM, the SPM, the SPMe, and even the DFN model given suitable
architectural modifications and advanced training schemes [21| 22] 23] 24, 25]. Moreover, Operator
Learning for LIB models has been applied in a data-driven, purely physics-informed, or hybrid manner,
e.g., for DoE methodologies and parameter or state estimation [24] 26l 27, 28], 29| [30].

This work aims to close the gap between these previous efforts and the application of Operator Learn-
ing for LIB parameter estimation by considering a high-dimensional parameter space and introducing a
novel estimation approach that exploits the inference speed and differentiability of PI-DeepONets. More
precisely, a parametrized PI-DeepONet is trained to approximate solutions to a parametric formulation
of the SPM with varying electrode-specific solid-phase diffusivities, active material volume fractions,
stoichiometric limits at 0 % and 100 % SOC, and randomly generated current profiles. After an initial
— significant, but one-time — training effort, the PI-DeepONet can be used as a fast surrogate model for
the SPM and also to efficiently infer gradient information in a global manner throughout the parameter
domain — even for application-specific current profiles that have not been part of the training process. Fi-
nally, an iterative parameter estimation algorithm is proposed that includes global optimal experimental
design, population-based parameter estimation via Differential Evolution (DE) and local identifiability
analysis based on Fisher-Information. The algorithm shows more robustness than standard, non-iterative
procedures and only becomes computationally tractable by relying on the trained PI-DeepONet and its
automatic differentiability paving the way for more wholistic and reliable state estimation in LIBs.

2 Methodology

In Section the SPM as the fundamental model to this work is introduced, and, in Section [2.2
the PI-DeepONet that is trained to solve the SPM for different current profiles and electrochemical
parameters. Moreover, in Section [2.3] optimality criteria based on Fisher-Information are introduced as
local or global metrics for parameter sensitivity, identifiability, and experimental design. Finally, a novel
parameter estimation algorithm enhanced by global experimental design and local identifiability analyis
is proposed in Section [2:4]



2.1 Single-Particle-Model (SPM)

The SPM is derived from Fick’s law of diffusion and describes the time-dependent lithium concentrations
¢;(r,t) in two spherically symmetric particles with radial dimensions r € [0, R;] for anode (j = n) and
cathode (j = p), respectively [4]. The SPM is governed by no-flux boundary conditions at the particle
centers (r = 0) and Neumann boundary conditions at the particle surfaces (r = R;) describing the flux
of lithium in dependence on the applied current profile I(t), i.e.,
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where D; denotes the electrode-specific solid-phase diffusivity of lithium, A the electrode surface area, L;
the electrode thickness, F' Faraday’s constant, and a; = 3}% the specific interfacial area calculated from
active material volume fractions ¢; and radii R,. Following convention, positive currents I(t) discharge
the cell, and 100 % SOC is defined by a fully lithiated anode and fully de-lithiated cathode. This is
reflected in Eq. by a negative sign for j = n, and a positive sign for j = p. The SPM is completed
by initial conditions that are related to the initial SOC, denoted as SOCy, and the four stoichiometric
limits 9?%, 9;00% that define the fraction of the maximum concentration ¢;*** at 0 % and 100 % SOC,

respectively:
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The time-dependent voltage response is derived from the concentrations at the particle surfaces c?“rf(t) =
¢;(r = Rj,t) and the applied current profile I(¢) via the material-specific open-circuit-potentials (OCP)
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where R denotes the universal gas constant and T the temperature which is assumed to be constant
throughout this work. Unless specified otherwise, all reference parameters in this work are obtained
from experimental results by Chen et al., cf. [3I], who characterized a cylindrical 21700 cell with a
NMCS811 cathode and a Graphite-SiO anode, as described in Tab. in the Appendix.

A common assumption in battery modeling identifies 0 % and 100 % SOC with predefined voltage lim-
its that aim to protect the battery from excessive degradation and safety risks due to overcharging or deep
discharging. In context of the SPM, this means that the stoichiometric limits (9%, §100% 02%, 9;00%)
do not only affect the initial conditions in Eq. and Eq. (5)), but must also yield voltage responses that
respect the voltage cut-offs at 0 % and 100 % SOC via Eq. . This is commonly achieved by scaling and
shifting the underlying OCPs to fit a given voltage response, which is often referred to as OCV-fitting
and allows to relate the change in stoichiometric limits with specific degradation mechanisms like LLI
or LAM, cf. [9] [32] B3], [34]. Following these lines of thoughts, we scale and shift the OCPs reported by
Chen et al., cf. [3I], according to stoichiometric limits (92%,0,1100%,92%,0;00%) such that the reported
voltage limits of 2.5 V and 4.2 V are matched at 0 % and 100 % SOC, respectively, cf. Eqs. f in
the Appendix. Furthermore, as the LLI during a single cycle is expected to be negligible, the amount of



cyclable lithium between stoichiometric limits in both electrodes must match at all times to be physically
meaningful, i.e.,

Al L (00007 — 007°) = Apcp™ Lye, (097 — 0,°°%) . (9)
Parameters (&, &p, 0% 9L00% 02%, 911,00%) have recently been referred to as electrode-specific SOH (eSOH)

parameters due to their direct and linear relation to SOH, LLI, and LAM [@], [7]. Motivated by this, the
remainder of this work is focused on estimating these parameters as accurately as possible to enable
accurate prediction of degradation mechanisms from voltage responses in realistic application scenarios
of LIBs. Note that we also aim to estimate diffusivity values D,,, D, as they play a crucial role in the
SPM and have been shown to span several orders of magnitude, e.g., depending on SOC, temperature,
or degradation mechanisms [6] [35].

2.2 Parametrized PI-DeepONet

Figure (1| shows the parametrized Physics-Informed Deep Operator Network (PI-DeepONet) that is
trained to approximate solutions of the SPM for spatio-temporal coordinates (r, t), scalar parameters
© = (Dy, Dy, n, &p, 020°%, 697, §190% SOCy) and current profiles I(t) for a predefined time interval
of 600 seconds. PI-DeepONet is composed of two sub-networks referred to as “branch” and “trunk”, re-
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Figure 1: Parametrized PI-DeepONet trained to solve the SPM for varying current profiles generated as
Gaussian Random Fields (top left) and scalar parametric inputs including diffusivities, active material
volume fractions, and stoichiometric limits (bottom left).

spectively, cf. [I9]. The branch is used to encode the discretized input function space for current profiles
I(t) and the trunk to encode the coordinate and parameter space. As we assume fixed values for A;, L;,
and ¢*** throughout this work, one of the eSOH parameters, in this case 92%, highlighted in orange, can
be determined from the remaining eSOH parameters via Eq. @D and is therefore removed from the input
domain of PI-DeepONet. In the following subsections, we describe the relevant architectural features
with respect to a vanilla DeepONet and our previous work on parametrized PI-DeepONets in [28].

2.2.1 Input function space

In contrast to [28], we train a single PI-DeepONet with branch inputs solely based on Gaussian Random
Fields (GRF), which are generated from the covariance kernel
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The length scale [ is randomly chosen from {1.0,0.1,0.01} and determines the time scale at which values
within the profile are correlating to each other. Therefore, smaller values of [ yield faster oscillations
and higher values in the corresponding frequency spectrum, cf. top left in Fig. Branch inputs are
discretized at a resolution of 1 Hz, i.e., each profile is represented by 601 values which are interpolated
linearly during training of PI-DeepONet. As we show in Section [3} this input function space is sufficient
to achieve a good generalization and extrapolation accuracy at inference for battery-specific current
profiles that were not part of the training profiles generated from Eq. .

2.2.2 Fourier feature embeddings

Similar to our previous work, cf. [28], and first introduced by Wang et al., cf. [36], we use spatio-temporal
multi-scale Fourier feature embeddings in the trunk of PI-DeepONet. Due to the increased complexity
and diversity of branch inputs and corresponding solutions, the temporal Fourier feature matrix B is split
into three matrices By, By, Bs which are sampled from Gaussian distributions with standard deviations
op, = 10, op, = 100 and op, = 1000, and connected to three individual sub-networks, cf. Fig. |1} This
adaption accounts for the more oscillatory dynamics in solutions to high-frequency inputs (e.g., { = 0.01
in Eq. (10)), most notably at the particle surfaces (r = R;) where the Neumann boundary condition in
Eq. scales linearly with I(t).

2.2.3 Hard-constraining techniques and data-free training

Due to the linearity of the SPM, a considerable amount of inputs, more precisely (100% 0% 9100% SOCy),
is only affecting the initial conditions in Eq. (4) and Eq. (§]). As first introduced by Lu et al cf [37],
such initial conditions can be hard- Constramed into the architecture of PI-DeepONet by transformmg
the outputs of the last layer ¢;(r,t) via

e N(rt) =t-¢;(rt) +

2 (11)
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Technically, the aforementioned parameters could also be merged into lumped inputs 2, cp to reduce the
dimensionality of the input parameter space of PI-DeepONet, but as we aim to estimate all stoichiometric
parameters directly in the scope of this work, we stick to the high-dimensional input domain presented
in Fig. [l A further crucial adaption is the hard-constraining of the homogeneous Neumann boundary
condition in Eq. . This property can be enforced by only sampling cosine terms in the spatial Fourier
feature embedding, as depicted in Fig. such that spatial derivatives vanish at » = 0 by design, cf.
recent work by Straub et al. [38]. This approach removes a further loss term from the training process
of PI-DeepONet that is thereby only governed by minimizing the purely physics-informed, data-free loss
Lo that is composed of the residuals of Eq. and Eq. for each electrode:
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The notation above with nondimensionalized collocation points Z = (7, f, ©) and non-dimensionalized
concentrations ¢; follows the nondimensionalization scheme discussed more thoroughly in our previ-
ous work, cf. [28]. We refer to the Appendix for the hyperparameters used in the training of
PI-DeepONet, such as network sizes, optimizer settings, amounts of sampled input functions (Ny), col-
location points on the r = R; boundary (Ngc), and within the full domain of collocation points (Ng).



2.2.4 Differentiable voltage post-processing and OCP scaling

Equations @ 8) relate the predicted surface concentration profiles ¢;(r = R;,t) to the voltage response
V(t) and can be added as a further transformation layer into PI-DeepONet, cf. Fig. |1 l Similarly, the
scaling of OCPs based on stoichiometric inputs (697, 100%, 90% ,0100%) can be enforced in the same
manner via the transformation described in Appendix E As the loss in Eq. is independent
of voltage, these transformation layers do not affect training performance, but enable fast inference of
voltage responses after training. Moreover, this procedure enables automatic differentiation of voltage
responses with respect to the parametric inputs, which is paramount for the following subsections that
are focused on parameter sensitivities, identifiabilities and optimal design of experiments for parameter
estimation.

2.3 Parameter sensitivity, identifiability and global experimental design

The implementation of PI-DeepONet, cf. Appendix allows automatic differentiation (AD) of the
networks outputs with respect to its inputs including parameters ®. Hence, the trained PI-DeepONet can
be used to efficiently analyze parameter sensitivities, identifiabilities, and various experimental designs.
We consider I(t) and SOC) as experimental design variables in this work as they are two of the main
influence factors for parameter sensitivity and identifiability [39][40]. Hence, they can and should be used
for optimizing design of experiments or, e.g., in an on-board automotive application, for selecting the
most informative sequences from a larger set of measurement data. Fisher-Information-Matrices (FIMs)
provide a mathematical framework that quantifies the information provided by a given experiment for a
set of parameters @. They are commonly computed from sensitivity matrices S, composed of derivatives
of some measurable outputs with respect to @, and the covariance matrix of the measurement error Q

as
F=S7Qs. (15)

While our approach in earlier work was limited to analysing FIMs based on surface concentrations
csurf, cf. [28], we now consider voltage responses V (I, SOCy, ©) = [V (t9), V(t1), ..., V(teoo)] that are
dlscretlzed at a resolution of 1 Hz over the considered time interval of 600 seconds. Hence, the FIM can
be computed for any experimental design (I, SOCy) and parameters © as

(16)
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where we assume no covariance in the output error, i.e., Q = 1, for the scope of this work. In this case,
F is equivalent to the Hessian of the cost function for parameter estimation based on voltage responses,
and can be used to quantify practical parameter identifiability according to Andersson et al. [10]. More
specifically, a high value on the FIM diagonal F; ; indicates a high sensitivity of parameter ©;, whereas
large values on off-diagonals F; ;, ¢ # j, indicate a high correlation between parameters (0;, ©,). In
order to optimize the experimental design based on Fisher-Information, common optimality criteria, cf.,
e.g., [10], aim at maximizing certain scalar properties of FIMs, such as:

Dy (I, SOCy, ©) :=logy(det(F)) , (17)
Aopi (I, SOCy, ©) := —log,(trace(F1)) | (18)
Eopi (I, SOCo, ©) := logio(Amin(F)) , (19)

opt(I SOCy, ©) := log;, ( mm(F)) (20)

max(F)

where Apin and Apax denote the smallest and largest eigenvalue of F, respectively. Note that these
criteria are often equivalently stated as minimizable quantities, e.g., by considering the inverse FIM or
its eigenvalues, but the above definitions are aligned to be maximizable quantities for better compara-
bility throughout this work. Definitions f are based on local FIMs and therefore biased by the
values of ®, which are commonly unavailable — or at least uncertain — in realistic parameter estimation
scenarios. To account for this, concepts like Global Sensitivity Analysis (GSA) [12] 13], Global Optimal



Experimental Design (GOED) [I1}, [41] [42] or Bayesian Experimental Design (BED) [43] [44] aim at cov-
ering the parameter space more rigorously to draw more robust conclusions for parameter sensitivities
and experimental design. In early work by Dette et al., cf. [45], Bayesian D-optimality is introduced as
the expectation of D-optimalities based on parameter priors £(©), i.e.,

Eg[log,o(det(F(0)))] Z/Glogm(det(F(@))) d¢(O) . (21)

More recently, Rainforth et al., ¢f. [44], comment on the connection between BED and Fisher-Information,
and, among other things, conclude that averaging alphabetic optimalities, such as Egs. 7, is 7ar-
guably Bayesian” in the sense of assuming uniform priors £(0) and using Fisher optimalities as utility
function for quantifying the information gain of an experiment. We follow these lines of thoughts and
average optimalities (|17] . 20)) throughout the parameter space to obtain, e.g., for the E*-optimality
criterion, the global E optlmahty

Opt NF Z Opt I SOCO,@Z’)) s (22)

where Eopt, Zopt and Eopt can be defined analogously and Ng is the amount of parameter samples
®; = (Dy, Dy, €n, €p, 9;00%, 92%, 911)00%)1- sampled from a uniform grid within the application-driven
bounds

L € (10715, 10719 (23)

Dp € [10715, 10713 , (24)
n € 0.8 2,, £n] = [0.6, 0.75] , (25)

e, € [0.8 &y, &,] = [0.532, 0.665] , (26)
g100% ¢ [A9% 4 0.9 - (§L00% — §100%) GL00%] ~ [0.82, 0.91] (27)
0%% € [09%, 60% + 0.1 - (1°0% — 49%)] ~ [0.026, 0.115] , (28)
0100% ¢ [§100% _ 0.1 . (0% — §100%)  §100%] x [0.205, 0.264] . (29)

The diffusivity ranges are aligned with the training domain of PI-DeepONet in Section[2.2] and motivated
by the aforementioned different orders of magnitude reported in literature, see, e.g., work by O’Regan
et al. [35]. Active material volume fractions are bounded between their nominal values from Tab.
and a 20 % lower value, reflecting the common End-of-Life criterion for aged battery cells at 80 % SOH.
The stoichiometric limits are varied in relatively narrow bounds reflecting the minor changes expected
due to LLI while ensuring that the resulting cell balancing and OCV fitting remain physically valid for
all parameter combinations, i.e., ensuring 911,00% < 92% < 1. To balance parameter space exploration
and computational tractability, we sample @, from a grid of three equidistant values per dimension
including lower bound, center, and upper bound of the corresponding ranges in Egs. 7, ie.,
N& =37 =2,187.

2.4 Iterative parameter estimation based on global experimental design and
local identifiability analysis

While both local and global optimalities can be used to maximize information in terms of a given opti-
mality, such experimental designs can still fall short during parameter estimation, e.g., due to insensitive
parameters being estimated poorly or correlated parameters not being separately identifiable. To address
this, we propose an iterative parameter estimation algorithm that is depicted in Fig. [2[ and based on
three steps: (I) Global optimal experimental design by means of optimizing global optimalities such as
Eq. (22)), (II) parameter estimation based on a Differential Evolution (DE) algorithm, and (III) local
identifiability analysis based on the FIM evaluated at the resulting parameter values ® from the previous
step. For step (III), we propose a simple threshold approach that would fix only those parameters whose
corresponding diagonal entries (i.e., parameter sensitivity) or off-diagonals to a sensitive parameter (i.e.,
correlation to a sensitive parameter) are above a relative threshold of 0.75 compared to the maximum



value of the respective FIM. The Cramer-Rao bound states that these parameters are most likely to be
estimated correctly after step (IT) [46]. After fixing locally identifiable parameters Ogyed, the procedure
is repeated from step (I) by computing FIMs only for the uncertain parameter set O yncertain = © \ Ofixed
and averaging the resulting optimalities across the uncertain parameter ranges. In this way, the algo-
rithm aims at iteratively reducing the curse of dimensionality in parameter space while performing the
estimation on the most informative experimental design for the remaining, most uncertain parameters
in each iteration. Due to large design spaces derived from continuous inputs like initial SOC or the

~ repeatwith
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Figure 2: Proposed parameter estimation scheme based on the trained PI-DeepONet: (I) The GOED
is determined for the parameters to be estimated (left) and used in (II) to estimate them via the DE
algorithm and the corresponding voltage predictions from PI-DeepONet. (IIT) A local identifiability
analysis is performed to fix the estimated values for the parameters that are most likely to be identified
correctly and the procedure is repeated for the remaining set of parameters @ ycertain-

applied current profile, it is evident that an efficient surrogate model for Step (II), but also an efficient
way of retrieving Fisher-Information in Steps (I) and (III) is paramount for this workflow to be both
computationally tractable and experimentally meaningful. In Section [3] we show that the PI-DeepONet
introduced in Section [2:2) is an ideal choice for providing the required efficiency in terms of surrogate
modeling and approximation of Fisher-Information and corresponding global optimalities.

3 Results and discussion

In this section, PI-DeepONet is evaluated in terms of its accuracy as a surrogate model for the SPM,
its accuracy for approximating Fisher-Information after training, and its viability for the parameter
estimation algorithm proposed in Section [2.4] This evaluation is based on SPM reference solutions
obtained via the open-source battery modeling framework PyBaMM, cf. [47], with settings as described

in Appendix

3.1 Surrogate model accuracy

The deviation between outputs ¢~, VNN predicted by PI-DeepONet and reference solutions ¢i°f, V**f ob-
tained from PyBaMM is quantified by two metrics. First, a normalized Mean-Absolute-Percentage-Error
(NMAPE) on the surface concentration profiles and, second, the Root-Mean-Squared-Error (RMSE) on



the resulting voltage responses, where both metrics are averaged uniformly in time at a resolution of
1 Hz, i.e.,

NMAPE™(I, SOC, Z Nf R, ti) — (), ti)| 100 % (30)
’ 07 = e . s . 0,
]E{n p} par mzax f R;,t)) — mtm(cj f(R;, 1))
N:—1
RMSE(I, SOCy, ©) = Z [V(eNN, £) — Vet &), (31)

where N; = 601 and the dependence of ¢;(r,t) and V(t) on the inputs (I, SOCy, ©) has been omitted for
the sake of readability. As the input parameters (6100% §9%, 911,00%, SOC)) are hard-constrained via Eq.
(11) and the voltage post-processing layer, these parameters are fixed to their nominal values from Tab.
and we set SOCy = 50 % for the evaluation of surrogate model accuracy. Both metrics are further
averaged over NI current profiles and N = 3% parameter samples which are analogously sampled
at three equidistant values for e; € [ 5max] and D; € [D}nin, D], respectively, with bounds as

J
specified in Egs. 7, ie.,

test test
NEest N&

1
surf surf
NMAPEZT = NN > ) NMAPE™!(I;, 0.5, ©;) (32)
i=1 j=1
1 Ntcst Ntcst
RMSE,y, = R Z Z RMSE(L;, 0.5, ©;) . (33)
=1 gj=1

To quantify the accuracy of PI-DeepONet for different interpolation and extrapolation use cases, six
groups of current profiles with a total of 15 profiles are generated, cf. Fig. in the Appendix.
These include three groups of GRF profiles with I € {1.0,0.1,0.01} representing interpolation based
on profiles similar to those used during training and three battery-specific profile groups representing
extrapolation based on constant-current profiles, pulse profiles, or common drive cycles for simulating
automotive applications. Figure |3| depicts the evolution of the acurracy metrics for each profile group

10 % NMAPE . 10 RMSE 4,4 [MV]
N —— GRF (1=1.0) — CC
4 ---- GRF (I=0.1) ---- Pulses
N, GRF (1=0.01) - Drive Cycles
1 %1 1
—— GRF (1=1.0) — CC
0.1 %1 ---- GRF (I1=0.1) ---- Pulses 0.11
-------- GRF (1=0.01) - Drive Cycles
0 20 40 60 80 0 20 40 60 80
Training time [h] Training time [h]

Figure 3: Evolution of accuracy metrics for different types of current profiles during training of PI-
DeepONet. (Blue=Interpolation): GRF profiles with different length scales [. (Red=Extrapolation):
Battery-specific profiles including constant-current discharge (CC), pulse profiles (Pulses), and represen-
tative profiles for automotive applications (Drive Cycles).

during training of PI-DeepONet, which was performed on a NVIDIA H200 GPU with hyperparameters



as provided in the Appendix[A.2] For both interpolation and extrapolation, the accuracy levels in surface
concentration are in line with the complexity of the applied profiles as both high-frequency GRF profiles
(1=0.01) and the more dynamic drive cycles remain at a higher level of around 3 % NMAPEZ‘:,’;f until the
end of training. To put these results into perspective, Fig. [l shows three representative current profiles,
the corresponding predictions of PI-DeepONet, and the reference obtained from PyBaMM for varying
diffusivities D,,, D, and active material volume fractions €,, €,. While both the medium-frequency
GREF profile and the considered pulse profile show high levels of accuracy with NMAPEf;;ngf <1 % and
RMSE,v; < 1 mV, a closer look at drive cycle #13 in the bottom row of Fig. [4| reveals that the surface
concentration dynamics are not approximated as accurate for high-frequency inputs. The inset plot for
¢, in the second column of that bottom row demonstrates that PI-DeepONet smoothly approximates
the more dynamic oscillations that are present in the reference solution. This indicates that — despite
the Fourier feature embeddings introduced in Section 2:2.2] — some spectral bias remains leaving room
for improvement in training PI-DeepONet to approximate the highest frequency components of such
solutions. Despite these inaccuracies in surface concentration, the corresponding voltage response in
the last column of the bottom row in Fig. E| is fairly accurate and yields a RMSE,,;, < 1 mV for
the considered drive cycles. This is due to the overpotentials 7; in Egs. @7 that depend more
significantly on the input current and overshadow the error in surface concentration in this case. This
effect is also SOC-dependent as a higher slope in UjoCP causes the errors in cj-‘”f to propagate more
significantly into the voltage response. For example, the GRF profiles at length scale [ = 0.01 feature a
higher current throughput, i.e., cover a wider SOC range, and therefore maintain a higher RMSE,,, of
around 2 mV in Fig. |3 despite showing higher accuracy than the drive cycles in terms of NMAPE?&?.
Considering the fast inference times of only a few milliseconds per SPM evaluation in PI-DeepONet —

cp(r=Rp, t,Dp, €,) Cp(r=Rp, t,Dp, &p) V(t, Dp, Dp, €n, €p)
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Figure 4: Accuracy of PI-DeepONet in surface concentration profiles and voltage responses compared
to the reference solution from PyBaMM for three different current profiles and varying parameters
(Dp, Dp, €n, €p) at upper and lower bounds as specified in Eqs. (23)—(29).

see the upcoming Section [3-3] for more details — these accuracy levels are within the expected order of
magnitude of measurement errors in realistic applications suggesting that PI-DeepONet can be a viable
surrogate model for the parameter estimation algorithm proposed in Section
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3.2 Parameter identifiability and global optimal experimental design
3.2.1 Local identifiability

The accuracy of gradient information obtained via AD on the trained PI-DeepONet is evaluated through
a comparison of FIMs, cf. Eq. , and resulting optimality metrics from Eqgs. f and a reference
based on PyBaMM. For this reference, a finite difference 5-point stencil is applied on PyBaMM solutions
using relative parameter perturbations of 1072 as discussed more thoroughly in our previous work [28].
Figure |5[ shows the local FIM at ground-truth parameters O for the experimental design using profile
#09 in Fig. (CC discharge at 0.1C) and SOCy = 0.5. Although the most important trends in terms of
high and low parameter sensitivities (diagonals) and correlations (off-diagonals) are accurately predicted
by PI-DeepONet, the rather insensitive parameters (D,,, €p, 911,00%) cause the FIM to be ill-conditioned
for this design. In Fig. |§|, optimalities from Egs. 7 are compared for varying initial SOCs and
four representative profiles including the aforementioned low-current CC profile #09. Due to the ill-

Pl-DeepONet + AD PyBaMM + 5-point stencil
g G 01 o 6% D, Dy & & 617 ol 6"

D, Dp
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Figure 5: Comparison of local FIMs at ground-truth parameters © for profile #09, cf. Fig. and
SOC, = 0.5 obtained from PI-DeepONet with AD (left) and the based on the reference solve PyBaMM
using a 5-point finite-difference stencil (right). A good agreement is observed specifically for the most
sensitive parameters (D, £,,, 0L00%, 09%) for this experimental design.

conditioning of FIMs for this profile, cf. Fig. o] significant deviations are observed in all optimalities,
which are based on the determinants, traces, or eigenvalues of the corresponding FIMs. Despite these
inaccuracies for ill-conditioned FIMs, we generally observe good agreement across the SOC range between
PI-DeepONet and PyBaMM for different GRF profiles, cf. #03 and #07, and even on extrapolation
represented by drive cycle #13 in Fig. Note that the maximum step size of PyBaMM’s default
solver had to be decreased to 0.01 s to obtain the results in Fig. [6] and no further changes could be
observed by decreasing the step size further or adapting other parameters related to meshing or the order
of the underlying finite difference stencil, cf. [28]. Therefore, these deviations are likely either a result of
PI-DeepONet providing imperfect gradients close to zero, or intrinsic instabilities due to the comparison
of almost zero quantities like determinants or eigenvalues of ill-conditioned FIMs. Another observation
is that the three optimalities Dopt, Aopt, Fopt agree with each other qualitatively, whereas E;pt shows a
quite different picture due to its different algebraic roots in the FIMs condition number, cf. Eq. .
Due to this observation, only Dopt and Ej, are considered in the following sections.

3.2.2 Global experimental design

The trained PI-DeepONet and its automatic differentiability allows rapid inference of FIM gradients
throughout the parameter space and therefore a fast inference of global optimalities such as Dy or
Ezpt as defined in Eq. . As this approach would be computationally prohibitive using PyBaMM —
see the discussion in the upcoming Section — we report results only obtained via AD on the trained
PI-DeepONet in this section. Figure [7| depicts the two global optimalities Doy and F:pt evaluated for
a total of 135 experimental designs (I, SOCy) that arise by combining the 15 profiles I(t) from Fig.
with 9 initial SOCs that are distributed uniformly from SOC, = 0.1 to SOCy = 0.9. The results on
Dopt show the main shortcoming of this metric, as the determinant of FIMs tends to overemphasize
single parameter sensitivities, in this case €,,, which is most sensitive in low SOC regimes, where UY“?
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Figure 6: Local optimalities evaluated at ground-truth parameters O for varying initial SOCs and
four representative profiles from Fig. [AT] showing good agreement between PI-DeepONet and PyBaMM
except for the most ill-conditioned FIM corresponding to the least informative experimental design (CC
discharge at 0.1C).
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Figure 7: Global D- and E*-optimalities for different experimental designs (I, SOCj) obtained via AD
on the trained PI-DeepONet. The five most informative experimental designs are highlighted for each
optimality metric and for further reference in Section

shows the steepest slope, cf. Fig. Hence, the GRF profile with the most net discharge, i.e., profile
#07 in Fig. turns out to be D-optimal at SOCy = 0.1 as it covers — on average — the steepest parts
of USCP that yield the highest sensitivity in €,. Due to this bias on the most sensitive parameters,
we also observe that Eopt, much like Zopt and Eopt, yields similar results throughout the parameter
region, which is indicated by the re-occuring trend towards low SOC regimes and further demonstrated
in the upcoming Section In contrast to this, _Zpt yields a more diverse result with many designs
of similar optimality, and less bias towards single parameter sensitivities. In the following section, we
empirically show that _:pt is the preferable optimality among the presented options to identify global
optimal experimental designs in different regions of the parameter space, especially when aiming for
estimation of all parameters ® and not only the most sensitive subset of parameters.

3.3 Iterative parameter estimation

Finally, we evaluate the performance of the parameter estimation procedure introduced in Section
to estimate parameters @ = (D,,, D,, €,, &, 0100% 9%, 911,00%) based on various experimental designs
(I, SOCy). The underlying estimation is driven by the DE algorithm with a total budget of 100,000
model evaluations to minimize the deviation between predicted voltages VNN(@) and the voltage response
V”f(é)) obtained with PyBaMM and ground truth parameters © from Tab. in the Appendix, i.e.,

N,—1
1 N
: — _ NN (+. _ \/ref(+. 2
min RMSE N, ;:Oj |[VNN(t;, @) — Vret(t;, ©)2 (34)
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where N; = 601 again discretizes the voltage response at a resolution of 1 Hz. The feasible ranges of
each parameter ©; € [@?ﬂn, @‘i“a"] are defined by extending the bounds specified in Eqgs. f by
10 % in both directions to not bias the optimization towards ground-truth values that are located on a
boundary of the search space. A further NMAPE is defined to measure the accuracy of the estimated
parameters @ with respect to the ground truth (':), ie.,

7

est _ ).
NMAPE® = lz 07 -0
7 =1

Gmax — gun 100% . (35)
Figure [§] shows numerous parameter estimation results based on the trained PI-DeepONet for four
different algorithmic scenarios in each of the 135 total experimental designs: a) 100,000 model evaluations
via DE without further adjustments, b) 50,000 evaluations, followed by a local identifiability analysis
(TA) to determine O yncertain = © \ Ogixed, followed by additional 50,000 evaluations on O upcertains C)
50,000 evaluations followed by a local IA, followed by additional 50,000 evaluations using a new, D-
optimal experimental design for @ypcertain, and d) 50,000 evaluations followed by a local TA, followed
by additional 50,000 evaluations using a new E*—optimal experimental design. To reduce random effects
due to the stochastic nature of the DE algorithm, each parameter estimation procedure is run three
times using a different random seed and only the mean results are displayed. The five most informative
experimental designs based on Dy (red) and Eopt (green), cf. Fig. H, are highlighted in order to visualize
whether these experimental design choices would have led to a good parameter estimation result in each
of the algorithmic scenarios a) — d).
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Figure 8: Mean parameter estimation accuracy using PI-DeepONet in four algorithmic approaches a) —
d) with 135 initial experimental designs (I, SOCjy) at three different random seeds. Highlighted cells
indicate the five most informative experimental designs based on global optimalities Dop (red) and E
(green) as identified in Fig. [7}

Based on Fig. 8| a), we conclude that the default estimation approach with 100,000 DE evaluations can
yield accurate results for some designs but neither Eopt nor E . from Fig. Iﬂcan reliably identify these
designs a-priori. Figure 8] l b) shows that fixing the locally 1dent1ﬁable parameters after 50,000 evaluations
without optimizing the experiment for the second 50,000 evaluations based on ©ycertain 1 improves some
results slightly but does not show a clear path to a-priori identification of good designs via Dopt or E

either. Subplot ¢) highlights the aforementioned shortcomings of the Dopt metric, which overemphas1zes
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Table 1: Comparison of runtimes between PyBaMM and the trained PI-DeepONet within the parameter
estimation algorithm in Fig. [2| assuming 135 experimental designs and © jcertain € R® in the second
iteration of the algorithm. The considered PI-DeepONet was trained once for around 80 hours and
runtimes in the second column refer to the evaluation of a single voltage response for a fixed experimental
design and parameter set.

Hardware E*—optimal design 9. 50k DE E*—optimal re-design >
(runtime) (37 FIMs per design) (~ 35 FIMs per design)
CPU* 135 - 2,187 - 28 SPMs ~ 135-234-28 SPMs || _
PyBaMM (319 ms) ~ 28 days ~ 8.3h ~ 3 days ~ 31 days
CPU" 135-9 AD batches & 7.2 s ~ 361 s 135 AD batches a 7.2 s ~28h
PL-DeepONet (3.61 ms) ~24h ~972s (265x)
GpPU™ 135 AD batches & 111 ms ~ 675 135 AD batches & 13 ms ~84s
(0.67 ms) ~14.9s ~1.7s (31,886x)

* Intel Xeon Gold 6244 (single core),

** NVIDIA H200 (single GPU)

the most sensitive parameters and therefore yields the same experimental re-design — profile #07 with
SOC, = 0.1, ¢f. Fig.[]] - for almost all initial estimation results without properly estimating the less
sensitive parameters in ©. Finally, Fig. d) uses the £, criterion and shows more robust results with

many different initial design choices leading to final parameter estimation errors of 4-5 % NMAPE®.
This robustness highlights the ability of the iterative estimation algorithm in Section [2.4] to recover most
parameters reasonably accurate by performing local IA and selecting an optimal design for the reduced
parameter set ©yncertain, cf- Fig. More importantly, most of the F*—optimal designs, highlighted in
green, yield good mean results in Fig. d), with the E*—optimal design — profile #13 at SOCy = 0.1 —
obtaining a mean NMAPE® of 3.4 % over three estimation procedures. One instance of the underlying
estimation procedures is visualized in more detail in the Appendix This result suggests that Ezpt isa
suitable criterion for identifying a good design for the first 50,000 DE iterations a-priori before performing
local TA and identifying the E*—optimal design for Oypcertain and the remaining 50,000 DE evaluations.
Better results in terms of NMAPE® are likely hindered by the prediction error of PI-DeepONet, cf. Fig.
which is above the RMSE < 0.01 mV that we observe for reference results with NMAPE® < 1 %
using PyBaMM as error-free surrogate model, cf. Fig. in the Appendix. However, obtaining such
low errors in PI-DeepONet would not be beneficial in practical applications as the expected voltage
measurement errors are likely above that order of magnitude. Instead, future work should tackle the
current design limitation induced by relatively low C-rates, tyax = 10 min, and a limited budget of
100,000 DE evaluations. Adapting these would increase the RMSE, at which parameters © can be
estimated accurately, to a more realistic order of magnitude, but would also require an electrochemical
model suitable for higher C-rates, i.e., the SPMe or DFN model, which is left for future work.

To quantify the efficiency of PI-DeepONet in the proposed parameter estimation algorithm, Tab.
compares the expected runtimes for finding a E*—optimal experimental design among 135 options,
performing 2 times 50,000 DE iterations, and computing a second E*—optimal design on a reduced
parameter set in between. For this comparison, we assume two fixed parameters after the local IA, i.e.,
Ouncertain € R® and 3° FIMs to be computed for each experimental design in the reduced parameter
space. Runtimes were measured for inference based on the compiled and trained PI-DeepONet and for
calling model.solve() in PyBaMM, respectively, i.e., any shared overhead for writing, reading or post-
processing results as well as the one-time effort for compiling and training PI-DeepONet, cf. Fig. [3is
neglected. Based on this comparison, PI-DeepONet offers a speedup factor of 265 on the considered
CPU, and more than 30,000 on a state-of-the-art GPU, which is likely to increase further with more
advanced hardware, problems of higher dimensionality, or computationally more complex LIB models.

Note that Fig. [§] - considering four algorithmic designs, 135 experimental designs and three different
random seeds — required a total of 162-10° model evaluations and close to 600,000 FIM computations, each
requiring another 20-24 model evaluations in a numerical five-point stencil approach. These numbers in-
dicate that even with multi-processing capabilities on HPC clusters, efforts like these are hardly tractable
with classical simulations, e.g., based on PyBaMM [48]. Hence, PI-DeepONet or similar successors look
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much more suited to further develop and improve such wholistic parameter estimation algorithms for LIB
models, combining computationally heavy global experimental design and population-based optimization
methods.

4 Conclusion and outlook

The proposed parametrized PI-DeepONet is able to approximate solutions of the SPM for various current
profiles and parametric inputs within few milliseconds while achieving errors less than 1 % in surface
concentration profiles and a RMSE < 1 mV in the resulting voltage response for current profiles with
moderate dynamics. Slightly larger errors of around 3 % in surface concentration profiles and 2 mV in
voltage RMSE are reported for the most dynamic profiles at a sampling rate of 1 Hz suggesting room
for improvement in the current training setup. Nevertheless, the data-free, purely physics-informed
training approach shows good extrapolation accuracy, e.g., for constant-current discharge, pulse profiles,
and representative driving cycles for automotive applications (UDDS, US06) with a reported RMSE <
1 mV at inference. Furthermore, it was shown that local Fisher-Information obtained via AD on the
trained PI-DeepONet is sufficiently accurate and allows a global, yet computationally tractable, view on
identifiability and optimal experimental design across the parameter space. An exception is presented
for experimental designs with very low identifiability in some parameters, which causes FIMs to be ill-
conditioned and results in corresponding optimalities to diverge between PI-DeepONet and the reference
solver PyBaMM. Finally, an iterative parameter estimation scheme was proposed that exploits the high
inference speed and automatic differentiability of PI-DeepONet to combine global optimal experimental
design with local identifiability analyses while iteratively removing the parameter space dimensions that
are most likely to be estimated correctly. This approach — coupled with a suitable optimality metric —
improves robustness in the parameter estimation process and paves the way for parameter-based state
estimation in realistic applications that require lightweight, but robust state estimation algorithms.

Further work is planned to improve the accuracy of PI-DeepONet for high-frequency current profiles as
these will play a crucial role, e.g., for state estimation in automotive applications of LIBs. Extending the
training objectives of PI-DeepONet to surrogate models of higher fidelity such as the SPMe or DFN model
would expand the applicability of this approach to higher C-rate scenarios and is therefore another crucial
next step. The presented parameter estimation algorithm should be viewed as a first proof-of-concept
and can be refined in several ways. These include applying more than two iterations of the proposed
algorithm, allowing a higher total model evaluation count, incorporating adaptive bayesian priors in the
sampling of global optimalities, or adaptively reducing parameter confidence bounds instead of fixing
locally identifiable parameters based on a rigorous threshold. The DE algorithm could be replaced by
optimizers that are both gradient- and population-based to further exploit the automatic differentiability
of PI-DeepONet and to increase the likelihood of finding a global minimum in parameter space. Finally,
the proposed algorithm based on PI-DeepONet needs to be validated with real measurement data to
prove its viability in realistic state estimation scenarios that include measurement errors and a less
structured experimental design space. Within this process, obtaining a trustworthy ground truth for
eSOH parameters and related degradation modes is probably the most difficult part, but, e.g., recent
efforts by Kirkaldy et al., cf. [49], are targeting the same challenge and should be considered as a viable
pathway for experimental validation.
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A Appendix

A.1 SPM parameters

Table lists the relevant parameters for the SPM as reported by Chen et al. [3I]. Note that we use
slightly modified nominal stoichiometries that were adapted and verified to satisfy Eq. @D via PyBaMM’s
internal electrode balancing algorithm.

Table Al: Cell specifications and parameters for the SPM as reported by Chen et al. [31].

Parameter | Unit Description Anode (j =n) Cathode (j = p)
@no [Ah] Nominal cell capacity 5
A [m?] Electrode surface area 0.1027
L; [m] Electrode thickness 8.52e-5 7.56e-5
R; [m] Electrode particle radius 5.86e-6 5.22e-6
69% [] Stoichiometry at 0% SOC 0.026 0.854
§100% (] Stoichiometry at 100% SOC 0.911 0.264
€5 -] Active material volume fraction 0.75 0.665
e [mol] Maximum concentration 33,133 63,104
a; (1] Specific interfacial area 3 3;—‘;
c(])» [r;—%l] Initial solid phase concentration cf. Eq. ({) cf. Eq.
D; [mTQ] Solid phase lithium diffusivity 3.3-1071 4.0-107%°
Ce j [291] | Electrolyte concentration (const.) 1000
F =] Faraday’s constant 96485.33
R [—%] Universal gas constant 8.31
T [K] Temperature 298.15
tmax [min] Length of time interval 10

Figure [AT] shows the six different profile groups containing a total of 15 profiles that are used to evaluate
PI-DeepONet with respect to surrogate model accuracy, accuracy of Fisher-Information, and eventually
for its suitability in the proposed parameter estimation algorithm. The two drive cycles contain the
Urban Dynamometer Driving Schedule (UDDS) representing light-duty driving conditions and the US06
protocol representing more aggressive conditions. Both cycles are provided by PyBaMM, but scaled to
a maximum C-rate of 0.5C and limited to a duration of 10 minutes for the scope of this work.

GRF (1=1.0) GRF (1=0.1) GRF (1=0.01) CcC Pulses Drive Cycles
0.0 — %00 — #03 —— #06 0.52 —— #09 — #11 2~ #13 (uUDDS)
_ “lo_ o 4 - 00 — _2 -
= < < £050{———— < <
-1.0 048 0
0 5 10 0 5 10 0 5 10 0 5 10 0 5 10 0 5 10
t[min] t [min] t [min] t [min] t [min] t[min]
\/— #01 2 — #04 4 — #07 2.6 — #10 5 P 2 #14 wso6)
—_ \ r —_ —_ —_ —_
=0 < [ <2 <25 < <
= =0 = i <1 0
-1 0 2.4 0
0 5 10 0 5 10 0 5 10 0 5 10 0 5 10 0 5 10
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— %02 0 — %05/ e — #o08
Z05 W < WVV < 00
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Figure Al: Current profile groups for evaluation of interpolation with GRF profiles of different length
scales | € {1.0, 0.1, 0.01} (left) and extrapolation with battery-specific profiles represented by two
constant-current profiles (CC), two pulse profiles and two drive cycles obtained via PyBaMM (right).
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For the scaling of OCPs based on stoichiometric limits, we adapt the original functions from Chen et al.,
cf. [31], that are available in PyBaMM as

UPF(0,) = —0.8090 - §, + 4.4875 — 0.0428 - tanh(18.5138 - (6, — 0.5542))
— 17.7326 - tanh(15.7890 - (0, — 0.3117)) + 17.5842 - tanh(15.9308 - (6, — 0.3120)), (A1)

UL (6,,) = 1.9793 - exp(—39.3631 - 0,,) + 0.2482 — 0.0909 - tanh(29.8538 - (6, — 0.1234))
— 0.04478 - tanh(14.9159 - (9, — 0.2769)) — 0.0205 - tanh(30.4444 - (9, — 0.6103)),  (A2)

and scale them for different stoichiometric inputs 9?%, 9}00% based on the electrode-balanced nominal
values reported in Tab. [AT] i.e.,

~ 0.853974 — 0.263849
0, = 0.263849 + 92% —g100%

(6, — 0,°°%) | (A3)

~ 0.910612 — 0.026347

_ 0%
0, = 0.026347 + T — (6, — 0°%) . (A4)

A.2 TImplementation details

The PI-DeepONet introduced in Section [2.2] was implemented based on DeepXDE with the TensorFlow
1 backend [50] using hyperparameters as described in Tab. Training performance and runtimes were
evaluated on a single NVIDIA H200 GPU with 144GB VRAM.

’ Parameter \ Value
Ng 50,000
Npc 10,946
Ntrain 10,000
1 (GRF, [ € {1.0,0.1,0.01}, cf. Eq. (10))
Epochs 1,000,000
Activation Function SiL.U
Initialization Glorot uniform
Initial Learning Rate (1) 5-1074
Exp. Learning Rate Decay n(epoch) = ng - 0.8 %%
Batch Size - Branch Ny 4
Branch Input Dimension N 601
Branch Size [niayers - Tnodes) 5-200
Trunk Size [Niayers - Pnodes) 3-[7-100]
Latent Output Dimension m 300
Multi-Output-Strategy independent
(ct. [50]) (separate sub-networks per output c;)
Trainable Parameters 1,167,802
Loss Weights (AppEr, Apc) (0.1, 1)

Table A2: Hyperparameters used for training PI-DeepONet in Fig.

Reference solutions were generated based on PyBaMM 23.5 with default solver settings and time dis-
cretization. The mesh size was increased to 1000 points in radial dimension for each electrode, as this
was found to be required for sufficient accuracy in the surface concentration profiles, especially for low
diffusivity values that cause steep concentration gradients close to the particle surface. In Section[3:3] the
DE implementation provided via the open-source SciPy package was used with default hyperparameters
except for the slightly tuned mutation (0.8) and recombination constants (0.9). Note that due to the
high computational costs of the parameter estimation algorithm when relying on the error-free PyBaMM
surrogate, cf. Fig. these and other DE hyperparameters like population size could not be tuned
exhaustively in the scope of this work.
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Parameter estimation accuracy for 100,000 DE evaluations using PyBaMM

Mean(NMAPE®)
(mean RMSE [mV]) 100%

10%

GRF, I=1.0 GRF, I=0.1 GRF, 1=0.01 CcC Pulses Drive Cycles 1%

Figure A2: Parameter estimation results using 100,000 DE iterations and PyBaMM’s SPM implementa-
tion as error-free model. The mean is computed over three estimation runs with different random seeds
and the number in brackets refers to the corresponding mean RMSE resulting from Eq. Highlighted
cells indicate the five most informative experimental designs based on global optimalities Dy, (red) and

szt (green) as identified in Fig. El

A.3 Example of iterative parameter estimation

Figure [A3] visualizes one instance of the parameter estimation procedure described in Section [2.4] and
evaluated in Section 3.3 in more detail.
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a) Evolution of min. RMSE and parameter accuracy during estimation b) Local IA and global E*-optimal design after 50,000 evaluations
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Figure A3: Example of the proposed parameter estimation scheme using profile #13 from Fig. at
SOC, = 0.1 as initial design. a) Evolution of the minimum voltage RMSE during DE optimization, cf.
Eq. , and corresponding estimation accuracy in terms of NMAPE®. b) After 50,000 DE evaluations,
parameter #109% is fixed as locally identifiable, and the new F*—optimal design is chosen via profile #03
at SOCy = 0.7. ¢) Evolution of the parameter values corresponding to the best results in terms of voltage
RMSE during DE optimization.
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